Archive | 6:01 pm

3GPP Burns Midnight Oil for 5G

10 Sep

Long hours, streamlined features to finish draft. The race is on to deliver some form of 5G as soon as possible.

An Intel executive painted a picture of engineers pushing the pedal to the metal to complete an early version of the 5G New Radio (NR) standard by the end of the year. She promised that Intel will have a test system based on its x86 processors and FPGAs as soon as the spec is finished.

The 3GPP group defining the 5G NR has set a priority of finishing a spec for a non-standalone version by the end of the year. It will extend existing LTE core networks with a 5G NR front end for services such as fixed-wireless access.

After that work is finished, the radio-access group will turn its attention to drafting a standalone 5G NR spec by September 2018.

“Right now, NR non-standalone is going fine with lots of motivation, come hell or high water, to declare a standard by the end of December,” said Asha Keddy, an Intel vice president and general manager of its next-generation and standards group. “The teams don’t even break until 10 p.m. on many days, and even then, sometimes they have sessions after dinner.”

To lighten the load, a plenary meeting of the 3GPP radio-access group next week is expected to streamline the proposed feature set for non-standalone NR. While a baseline of features such as channel coding and subcarrier spacing have been set, some features are behind schedule for being defined, such as MIMO beam management, said Keddy.

It’s hard to say what features will be in or out at this stage, given that decisions will depend on agreement among carriers. “Some of these are hit-or-miss, like when [Congress] passes a bill,” she said.

It’s not an easy job, given the wide variety of use cases still being explored for 5G and the time frames involved. “We are talking about writing a standard that will emerge in 2020, peak in 2030, and still be around in 2040 — it’s kind of a responsibility to the future,” she said.

The difficulty is even greater given carrier pressure. For example, AT&T and Verizon have announced plans to roll out fixed-wireless access services next year based on the non-standalone 5G NR, even though that standard won’t be formally ratified until late next year.

N

An Intel 5G test system in the field. (Images: Intel)

An Intel 5G test system in the field. (Images: Intel)

Companies such as Intel and Qualcomm have been supplying CPU- and FPGA-based systems for use in carrier trials. They have been updating the systems’ software to keep pace with developments in 3GPP and carrier requests.

For its part, Intel has deployed about 200 units of its 5G test systems to date. They will be used on some of the fixed-wireless access trials with AT&T and Verizon in the U.S., as well as for other use cases in 5G trials with Korea Telecom and NTT Docomo in Japan.

Some of the systems are testing specialized use cases in vertical markets with widely varied needs, such as automotive, media, and industrial, with companies including GE and Honeywell. The pace of all of the trials is expected to pick up next year once the systems support the 5G non-standalone spec.

Intel’s first 5G test system was released in February 2016 supporting sub-6-GHz and mm-wave frequencies. It launched a second-generation platform with integrated 4×4 MIMO in August 2016.

The current system supports bands including 600–900 MHz, 3.3–4.2 GHz, 4.4–4.9 GHz, 5.1–5.9 GHz, 28 GHz, and 39 GHz. It provides data rates up to 10 Gbits/second.

Keddy would not comment on Intel’s plans for dedicated silicon for 5G either in smartphones or base stations.

In January, Intel announced that a 5G modem for smartphones made in its 14-nm process will sample in the second half of this year. The announcement came before the decision to split NR into the non-standalone and standalone specs.

Similarly, archrival Qualcomm announced late last year that its X50 5G modem will sample in 2017. It uses eight 100-MHz channels, a 2×2 MIMO antenna array, adaptive beamforming techniques, and 64 QAM to achieve a 90-dB link budget and works with a separate 28-GHz transceiver and power management chips.

Source: http://www.eetimes.com/document.asp?doc_id=1332248&page_number=2

5G use cases

10 Sep
With 5G promising “ultra-high throughput, ultra-low latency transmission, and edge computing”, Huawei and Softbank’s 5G use cases including real-time UHD video, robotic arm control and more.

Seeking their own slices of 5G supremacy, Japan’s Softbank Corp and the Japanese division of China’s Huawei Technologies have “jointly demonstrated various potential use cases for a 5G network.”

As can be seen by the two photos provided at the end of this article, the demonstration “included real-time UHD video transmission using ultra-high throughput, remote control of a robotic arm using ultra-low latency transmission and remote rendering via a GPU server using edge computing.”

In addition, the real-time UHD video transmission demonstrated throughput of “over 800 Mbps.”

The videos show a game of air Hockey being played, with a description of how this works in example 3, below.

The remote control of the robotic arm also demonstrated an “ultra-low latency one-way transmission of less than 2ms.”With SoftBank planning “various experiments to study 5G technologies and endeavouring to launch 5G commercial services around 2020,” it’s clear these kinds of demonstrations are just a glimpse into what is promised to be a glorious 5G future.

Of course, 5G promises to connect everyone to everything, everywhere, especially via a vast array of IoT devices, so security is still a major issue needing to be solved, but as with the final 5G standards, a lot of work is being done in all these regards to deliver solid solutions backed by superior security, and we’re just going to have to wait and see how successful the industry is at these issues.

As for the edge computing mentioned above, Huawei and Softbank state that, “in edge computing, servers are located near by base stations, i.e. at the edge of an mobile network, with a distributed way.”

The dynamic duo state that “This architecture allows us to realise ultra low latency transmission between the servers and mobile terminals. Also, it is possible to process a huge amount of data gathered by IoT devices to decrease the load of the mobile network.”

Here are the demonstration details provided by both companies, with accompanying infographics:

1. Real-time UHD video transmission

“A UHD camera was installed inside the demonstration room to capture outdoor scenery. The data from this camera was then compressed in real-time using an encoder and transmitted through the ultra-high throughput 5G network to a UHD monitor via a decoder, where the original data was recovered.

“In this demonstration, the scenery of the Odaiba Tokyo Bay area was successfully displayed on the UHD monitor using the ultra-high throughput provided by the 5G network. This technology can be applied to various industries, including tele-health or tele-education.”

Turn phone horizontal to see full image if viewing on mobile:

2. Immersive video

“Scenery was captured by a 180-degree camera equipped with four lenses pointing four different directions installed in the demonstration room, and captured scenery was distributed to smartphones and tablets over the 5G network.

“Four separate cameras were set up to capture the scenery in different directions, and the video images captured by these cameras were stitched together to generate a 180-degree panoramic video image that enabled multiple simultaneous camera views. Then the video image was compressed and distributed to smartphones or tablets in real-time over the 5G network, which gives users a truly realistic user experience.

“Coupled with a 5G network, this technology can be applied to virtual reality (VR) or augmented reality (AR).”

3. Remote control of robotic arm with ultra-low latency

“A robotic arm played an air hockey game against a human in this demonstration. A camera installed on top of the air hockey table detected the puck’s position to calculate its trajectory.

“The calculated result was then forwarded to the robotic arm control server to control the robotic arm. In this demonstration, the robotic arm was able to strike back the puck shot by the human player on various trajectories. This technology can be applied to factory automation, for example.”

4. Remote rendering by GPU server

“Rendering is a technology used to generate videos or images using computers with GPUs (Graphic Processor Unit). This technology is used for generating HD videos in computer games or for CAD (Computer Aided Design). The rendering consumes a large amount of computing resources. Therefore, HD computer games or HD CADs were not executable on tablets or smartphones on their own.

“However, edge computing technology provided by the 5G network allows us to enjoy HD computer games or HD CADs on tablets or smartphones. A GPU server located near a 5G base station performed rendering and the image generated by the GPU server was sent to the tablet over the ultra-high throughput and ultra-low latency 5G network. This technology can be applied to check the CAD data at a construction site with a tablet or to enjoy a HD game application on a smartphone.”

Huawei and Softbank note that: “Immersive video” and “remote control of a robotic arm with ultra-low latency” were jointly integrated and configured for demonstration by SoftBank and Huawei. “UHD real-time video transmission” and “Remote rendering with GPU servers” were integrated and configured for demonstration by SoftBank.

Here are the photos of the Air Hockey game in action:

 

5G use cases demonstrated by SoftBank and Huawei

Source: https://www.itwire.com/telecoms-and-nbn/79837-5g-use-cases-demonstrated-by-softbank-and-huawei.html

5G Rollout In The US: Expected Launch Date, Speeds And Functionality

10 Sep

Super-Fast 5G networks are expected to change the way we use the internet.

AT&T is testing 5G out in the real world in partnership with Intel and Ericsson.
The rollout of 5G networks has been anticipated ever since 4G took off. However, it is yet to become a reality. Yet, it is the need of the hour in the age of smart homes, connected cars, and connected devices.

5G is expected to be a major improvement over 4G and might offer speed of over 1 GB per second. According to the International Telecommunication Union’s 5G standard, 5G networks might offer peak speed of 20 GB per second downlink and 10 GB uplink. The real-world data speed is expected to come up to with at least 100 MB per second.

It is expected to cause an increase in consumer data usage which will make the usage of all things connected whether it is smartphones, smart speakers or cars, much easier for users.

Since it will be around 30-50 times faster than the current data speeds, it will make overall usage of smart devices smoother and easier. It might make for more devices such as the upcoming Apple Watch 3 to become LTE capable i.e. devices would come with embedded SIM cards, providing them data rather than being Wi-Fi dependent.

But 5G has been in the works for long. When will it actually launch?

5G networks are expected to launch by 2020 and according to Gartner, they might cause a three-fold increase in number of connected devices. Whenever it is launched, 5G will support more devices than current 4G ones.

It might also lure consumers into using more value-added services which might make it a more profitable deal for network providers.

Many network providers are already claiming to provide 5G including Verizon and AT&T but the fact remains that none have really stepped up to the mantle by providing actual 1 GB per second speed.

5G will need a strong signal and its signals are high and short, therefore, network provider will have to protect their networks against obstructions.

While network providers might get their act together, most probably by 2020, the hardware will also have to come up to par. Smartphones and other smart devices will have to be equipped with 5G-capable bands.

For example, Apple has already received approval from the Federal Communications Commission for testing 5G broadband and is expected to make its upcoming phones, including the iPhone 8, 5G-capable. Samsung’s Galaxy S8 and Note 8 run on AT&T networks also claim to be 5G-capable.

5G is also expected to accelerate the adoption of technologies such as virtual reality and augmented reality and also increase the presence of more artificial-intelligence based apps and games on connected devices.

That being said, 5G also has risks of exposing users to increased radiation. According to the National Toxicology Program, increased radiation might risk in an increase in the occurrence of tumors.

All such issues will need to be worked out before the commercial deployment of 5G.

Source: http://www.cetusnews.com/tech/5G-Rollout-In-The-US–Expected-Launch-Date–Speeds-And-Functionality.B1ee4N2M9-.html