Archive | 3GPP RSS feed for this section

Is Mobile Network Future Already Written?

25 Aug

5G, the new generation of mobile communication systems with its well-known ITU 2020 triangle of new capabilities, which not only include ultra-high speeds but also ultra-low latency, ultra-high reliability, and massive connectivity promise to expand the applications of mobile communications to entirely new and previously unimagined “vertical industries” and markets such as self-driving cars, smart cities, industry 4.0, remote robotic surgery, smart agriculture, and smart energy grids. The mobile communications system is already one of the most complex engineering systems in the history of mankind. As 5G network penetrates deeper and deeper into the fabrics of the 21st century society, we can also expect an exponential increase in the level of complexity in design, deployment, and management of future mobile communication networks which, if not addressed properly, have the potential of making 5G the victim of its own early successes.

Breakthroughs in Artificial Intelligence (AI) and Machine Learning (ML), including deep neural networks and probability models, are creating paths for computing technology to perform tasks that once seemed out of reach. Taken for granted today, speech recognition and instant translation once appeared intractable, and the board game ‘Go’ had long been regarded as a case testing the limits of AI. With the recent win of Google’s ‘AlphaGo’ machine over world champion Lee Sedol — a solution considered by some experts to be at least a decade further away — was achieved using a ML-based process trained both from human and computer play. Self-driving cars are another example of a domain long considered unrealistic even just a few years ago — and now this technology is among the most active in terms of industry investment and expected success. Each of these advances is a demonstration of the coming wave of as-yet-unrealized capabilities. AI, therefore, offers many new opportunities to meet the enormous new challenges of design, deployment, and management of future mobile communication networks in the era of 5G and beyond, as we illustrate below using a number of current and emerging scenarios.

Network Function Virtualization Design with AI

Network Function Virtualization (NFV) [1] has recently attracted telecom operators to migrate network functionalities from expensive bespoke hardware systems to virtualized IT infrastructures where they are deployed as software components. A fundamental architectural aspect of the 5G network is the ability to create separate end-to-end slices to support 5G’s heterogeneous use cases. These slices are customised virtual network instances enabled by NFV. As the use cases become well-defined, the slices need to evolve to match the changing users’ requirements, ideally in real time. Therefore, the platform needs not only to adapt based on feedback from vertical applications, but also do so in an intelligent and non-disruptive manner. To address this complex problem, we have recently proposed the 5G NFV “microservices” concept, which decomposes a large application into its sub-components (i.e., microservices) and deploys them in a 5G network. This facilitates a more flexible, lightweight system, as smaller components are easier to process. Many cloud-computing companies, such as Netflix and Amazon, are deploying their applications using the microservice approach benefitting from its scalability, ease of upgrade, simplified development, simplified testing, less vulnerability to security attacks, and fault tolerance [6]. Expecting the potential significant benefits of such an approach in future mobile networks, we are developing machine-learning-aided intelligent and optimal implementation of the microservices and DevOps concepts for software-defined 5G networks. Our machine learning engine collects and analyse a large volume of real data to predict Quality of Service (QoS) and security effects, and take decisions on intelligently composing/decomposing services, following an observe-analyse-learn- and act cognitive cycle.

We define a three-layer architecture, as depicted in Figure 1, composing of service layer, orchestration layer, and infrastructure layer. The service layer will be responsible for turning user’s requirements into a service function chain (SFC) graph and giving the SFC graph output to the orchestration layer to deploy it into the infrastructure layer. In addition to the orchestration layer, components specified by NFV MANO [1], the orchestration layer will have the machine learning prediction engine which will be responsible for analysing network conditions/data and decompose the SFC graph or network functions into a microservice graph depending on future predictions. The microservice graph is then deployed into the infrastructure layer using the orchestration framework proposed by NFV-MANO.

Figure 1: Machine learning based network function decomposition and composition architecture.

Figure 1: Machine learning based network function decomposition and composition architecture.

Physical Layer Design Beyond-5G with Deep-Neural Networks

Deep learning (DL) based auto encoder (AE) has been proposed recently as a promising, and potentially disruptive Physical Layer (PHY) design for beyond-5G communication systems. DL based approaches offer a fundamentally new and holistic approach to the physical layer design problem and hold the promise for performance enhancement in complex environments that are difficult to characterize with tractable mathematical models, e.g., for the communication channel [2]. Compared to a traditional communication system, as shown in Figure 2 (top) with a multiple-block structure, the DL based AE, as shown in Figure 2 (bottom), provides a new PHY paradigm with a pure data-driven and end-to-end learning based solution which enables the physical layer to redesign itself through the learning process in order to optimally perform in different scenarios and environment. As an example, time evolution of the constellations of two auto encoder transmit-receiver pairs are shown in Figure 3 which starting from an identical set of constellations use DL-based learning to achieve optimal constellations in the presence of mutual interference [3].

Figure 2: A conventional transceiver chain consisting of multiple signal processing blocks (top) is replaced by a DL-based auto encoder (bottom).

Figure 2: A conventional transceiver chain consisting of multiple signal processing blocks (top) is replaced by a DL-based auto encoder (bottom).
Figure 3: Visualization of DL-based adaption of constellations in the interface scenario of two auto encoder transmit-receiver pairs (Gif animation included in online version. Animation produced by Lloyd Pellatt, University of Sussex).
Figure 3: Visualization of DL-based adaption of constellations in the interface scenario of two auto encoder transmit-receiver pairs (Gif animation included in online version. Animation produced by Lloyd Pellatt, University of Sussex).

Spectrum Sharing with AI

The concept of cognitive radio was originally introduced in the visionary work of Joseph Mitola as the marriage between wireless communications and artificial intelligence, i.e., wireless devices that can change their operations in response to the environment and changing user requirements, following a cognitive cycle of observe/sense, learn and act/adapt.  Cognitive radio has found its most prominent application in the field of intelligent spectrum sharing. Therefore, it is befitting to highlight the critical role that AI can play in enabling a much more efficient sharing of radio spectrum in the era of 5G. 5G New Radio (NR) is expected to support diverse spectrum bands, including the conventional sub-6 GHz band, the new licensed millimetre wave (mm-wave)  bands which are being allocated for 5G, as well as unlicensed spectrum. Very recently 3rd Generation Partnership Project (3GPP) Release-16 has introduced a new spectrum sharing paradigm for 5G in unlicensed spectrum. Finally, both in the UK and Japan the new paradigm of local 5G networks are being introduced which can be expected to rely heavily on spectrum sharing. As an example of such new challenges, the scenario of 60 GHz unlicensed spectrum sharing is shown in Figure 4(a), which depicts a beam-collision interference scenario in this band. In this scenario, multiple 5G NR BSs belonging to different operators and different access technologies use mm-wave communications to provide Gbps connectivity to the users. Due to high density of BS and the number of beams used per BS, beam-collision can occur where unintended beam from a “hostile” BS can cause server interference to a user. Coordination of beam-scheduling between adjacent BSs to avoid such interference scenario is not possible when considering the use of the unlicensed band as different  BS operating in this band may belong to different operators or even use different access technologies, e.g., 5G NR versus, e.g., WiGig or Multifire. To solve this challenge, reinforcement learning algorithms can successfully be employed to achieve self-organized beam-management and beam-coordination without the need for any centralized coordination or explicit signalling [4].  As 4(b) demonstrates (for the scenario with 10 BSs and cell size of 200 m) reinforcement learning-based self-organized beam scheduling (algorithms 2 and 3 in the Figure 4(b)) can achieve system spectral efficiencies that are much higher than the baseline random selection (algorithm 1) and are very close to the theoretical limits obtained from an exhaustive search (algorithm 4), which besides not being scalable would require centralised coordination.

Figure 4: Spectrum sharing scenario in unlicensed mm-wave spectrum (left) and system spectral efficiency of 10 BS deployment (right). Results are shown for random scheduling (algorithm 1), two versions of ML-based schemes (algorithms 2 and 3) and theoretical limit obtained from exhaustive search in beam configuration space (algorithm 4).

Figure 4: Spectrum sharing scenario in unlicensed mm-wave spectrum (left) and system spectral efficiency of 10 BS deployment (right).  Results are shown for random scheduling (algorithm 1), two versions of ML-based schemes (algorithms 2 and 3) and theoretical limit obtained from exhaustive search in beam configuration space (algorithm 4).

Conclusions

In this article, we presented few case studies to demonstrate the use of AI as a powerful new approach to adaptive design and operations of 5G and beyond-5G mobile networks. With mobile industry heavily investing in AI technologies and new standard activities and initiatives, including ETSI Experiential Networked Intelligence ISG [5], the ITU Focus Group on Machine Learning for Future Networks Including 5G (FG-ML5G) and the IEEE Communication Society’s Machine Learning for Communications ETI are already actively working on harnessing the power of AI and ML for future telecommunication networks, it is clear that these technologies will play a key role in the evolutionary path of 5G toward much more efficient, adaptive, and automated mobile communication networks. However, with its phenomenally fast pace of development, deep penetration of Artificial Intelligence and machine-learning may eventually disrupt the entire mobile networks as we know it, hence ushering the era of 6G.

Source: https://www.comsoc.org/publications/ctn/mobile-network-future-already-written

Advertisements

Channel Coding NR

25 Aug

In 5G NR two type of coding chosen by 3GPP.

  • LDPC : Low density parity check
  • Polar code 

Why LDPC and Polar code chosen for 5G Network

Although many coding schemes with capacity achieving performance at large block lengths are available, many of those do not show consistent good performance in a wide range of block lengths and code rates as the eMBB scenario demands. But turbo, LDPC and polar codes show promising BLER performance in a wide range of coding rates and code lengths; hence, are being considered for 5G physical layer. Due to the low error probability performance within a 1dB fraction from the the Shannon limit, turbo codes are being used in a variety of applications, such as deep space communications, 3G/4G mobile communication in Universal Mobile  Telecommunications System (UMTS) and LTE standards and Digital Video Broadcasting (DVB). Although it is being used in 3G and 4G, it may not satisfy the performance requirements of eMBB for all the code rates and block lengths as the implementation complexity is too high for higher data rates.

Invention of LDPC

LDPC codes were originally invented and published in 1962.

(5G) new radio (NR) holds promise in fulfilling new communication requirements that enable ubiquitous, low-latency, high-speed, and high-reliability connections among mobile devices. Compared to fourth-generation (4G) long-term evolution (LTE), new error-correcting codes have been introduced in 5G NR for both data and control channels. In this article, the specific low-density parity-check (LDPC) codes and polar codes adopted by the 5G NR standard are described.

Turbo codes, prevalent in most modern cellular devices, are set to be replaced by LDPC codes as the code for forward error correction, NR is a pair of new error-correcting channel codes adopted, respectively, for data channels and control channels. Specifically, LDPC codes replaced turbo codes for data channels, and polar codes replaced tail-biting convolution codes (TBCCs) for control channels.This transition was ushered in mainly because of the high throughput demands for 5G New Radio (NR). The new channel coding solution also needs to support incremental-redundancy hybrid ARQ, and a wide range of block lengths and coding rates, with stringent performance guarantees and minimal description complexity. The purpose of each key component in these codes and the associated operations are explained. The performance and implementation advantages of these new codes are compared with those of 4G LTE.

Why LDPC ?

  • Compared to turbo code decoders, the computations for LDPC codes decompose into a larger number of smaller independent atomic units; hence, greater parallelism can be more effectively achieved in hardware.
  • LDPC codes have already been adopted into other wireless standards including IEEE 802.11, digital video broadcast (DVB), and Advanced Television System Committee (ATSC).
  • The broad requirements of 5G NR demand some innovation in the LDPC design. The need to support IR-hybrid automatic repeat request (HARQ) as well as a wide range of block sizes and code rates demands an adjustable design.
  • LDPC codes can offer higher coding gains than turbo codes and have lower error floors.
  • LDPC codes can simultaneously be computationally more efficient than turbo codes, that is, require fewer operations to achieve the same target block error rate (BLER) at a given energy per symbol (signal-to noise ratio, SNR)
  • Consequently, the throughput of the LDPC decoder increases as the code rate increases.
  • LDPC code shows inferior performance for short block lengths (< 400 bits) and at low code rates (< 1/3) [ which is typical scenario for URLLC and mMTC use cases. In case of TBCC codes, no further improvements have been observed towards 5G new use cases.

 

 The main advantages of 5G NR LDPC codes compared  to turbo codes used in 4G LTE 

 

  •         1.Better area throughput efficiency (e.g., measured in Gb/s/mm2) and substantially                 higher achievable peak throughput.
  •         2. reduced decoding complexity and improved decoding latency (especially when                     operating at high code rates) due to higher degree of parallelization.
  •        3. improved performance, with error floors around or below the block error rate                       (BLER) 10¯5 for all code sizes and code rates.

These advantages make NR LDPC codes suitable for the very high throughputs and ultra-reliable low-latencycommunication targeted with 5G, where the targeted peak data rate is 20 Gb/s for downlink and 10 Gb/s for uplink.

 

Structure of LDPC

 

Structure of NR LDPC Codes

 

The NR LDPC coding chain contain

  • code block segmentation,
  • cyclic-redundancy-check (CRC)
  • LDPC encoding
  • Rate matching
  • systematic-bit-priority interleaving

code block segmentation allows very large transport blocks to be split into multiple smaller-sized code blocks that can be efficiently processed by the LDPC encoder/decoder. The CRC bits are then attached for error detection purposes. Combined with the built-in error detection of the LDPC codes through the parity-check (PC) equations, very low probability of undetected errors can be achieved. The rectangular interleaver with number of rows equal to the quadrature amplitude modulation (QAM) order improves performance by making systematic bits more reliable than parity bits for the initial transmission of the code blocks.

NR LDPC codes use a quasi-cyclic structure, where the parity-check matrix (PCM) is defined by a smaller base matrix.Each entry of the base matrix represents either a Z # Z zero matrix or a shifted Z # Z identity matrix, where a cyclic shift (given by a shift coefficient) to the right of each row is applied.

The LDPC codes chosen for the data channel in 5G NR are quasi-cyclic and have a rate-compatible structure that facilitates their use in hybrid automatic-repetition-request (HARQ) protocols

General structure of the base matrix used in the quasi-cyclic LDPC codes selected for the data channel in NR.

To cover the large range of information payloads and rates that need to be supported in 5G NR,
two different base matrices are specified.

Each white square represents a zero in the base matrix and each nonwhite square represents a one.

The first two columns in gray correspond to punctured systematic bits that are actually not transmitted.

The blue (dark gray in print version) part constitutes the kernel of the base matrix, and it defines a high-rate code.

The dual-diagonal structure of the parity subsection of the kernel enables efficient encoding. Transmission at lower code rates is achieved by adding additional parity bits,

The base matrix #1, which is optimized for high rates and long block lengths, supports LDPC codes of a nominal rate between 1/3 and 8/9. This matrix is of dimension 46 × 68 and has 22 systematic columns. Together with a lift factor of 384, this yields a maximum information payload of k = 8448 bits (including CRC).

The base matrix #2 is optimized for shorter block lengths and smaller rates. It enables transmissions at a nominal rate between 1/5 and 2/3, it is of dimension 42 × 52, and it has 10 systematic columns.
This implies that the maximum information payload is k = 3840.

 

Polar Code 

Polar codes, introduced by Erdal Arikan in 2009 , are the first class of linear block codes that provably achieve the capacity of memoryless symmetric  (Shannon) capacity of a binary input discrete memoryless channel using a low-complexity decoder, particularly, a successive cancellation (SC) decoder. The main idea of polar coding  is to transform a pair of identical binary-input channels into two distinct channels of different qualities: one better and one worse than the original binary-input channel.

Polar code is a class of linear block codes based on the concept of Channel polarization. Explicit code construction and simple decoding schemes with modest complexity and memory requirements renders polar code appealing for many 5G NR applications.

Polar codes with effortless methods of puncturing (variable code rate) and code shortening (variable code length) can achieve high throughput and BER performance better.

At first, in October 2016 a Chinese firm Huawei used Polar codes as channel coding method in 5G field trials and achieved downlink speed of 27Gbps.

In November 2016, 3GPP standardized polar code as dominant coding for control channel functions in 5G eMBB scenario in RAN 86 and 87 meetings.

Turbo code is no more in the race due to presence of error floor which make it unsuitable for reliable communication.High complexity iterative decoding algorithms result in low throughput and high latency. Also, the poor performance at low code rates for shorter block lengths make turbo code unfit for 5G NR.

Polar Code is considered as promising contender for the 5G URLLC and mMTC use cases,It offers excellent performance with variety in code rates and code lengths through simple puncturing and code shortening mechanisms respectively

Polar codes can support 99.999% reliability which is mandatory for  the ultra-high reliability requirements of 5G applications.

Use of simple encoding and low complexity SC-based decoding algorithms, lowers terminal power consumption in polar codes (20 times lower than turbo code for same complexity).

Polar code has lower SNR requirements than the other codes for equivalent error rate and hence, provides higher coding gain and increased spectral efficiency.

Framework of Polar Code in 5G Trial System

The following figure is shown for the framework of encoding and decoding using Polar code. At the transmitter, it will use Polar code as channel coding scheme. Same as in Turbo coding module, function blocks such as segmentation of Transmission Block (TB) into multiple Code Blocks (CBs), rate matching (RM) etc. are also introduced when using Polar code at the transmitter. At the receiver side, correspondingly, de-RM is firstly implemented, followed by decoding CB blocks and concatenating CB blocks into one TB block. Different from Turbo decoding, Polar decoding uses a specific decoding scheme, SCL to decode each CB block. For the encoding and decoding framework of Turbo.

  NR polar coding chain

 

Source: https://cafetele.com/channel-coding-in-5g-new-radio/

An overview of the 3GPP 5G security standard

21 Aug

Building the inherently secure 5G system required a holistic effort, rather than focusing on individual parts in isolation. This is why several organizations such as the 3GPP, ETSI, and IETF have worked together to jointly develop the 5G system, each focusing on specific parts. Below, we present the main enhancements in the 3GPP 5G security standard.

Crowd crossing street

These enhancements come in terms of a flexible authentication framework in 5G, allowing the use of different types of credentials besides the SIM cards; enhanced subscriber privacy features putting an end to the IMSI catcher threat; additional higher protocol layer security mechanisms to protect the new service-based interfaces; and integrity protection of user data over the air interface.

Overview: Security architecture in 5G and LTE/4G systems

As shown in the figure below, there are many similarities between LTE/4G and 5G in terms of the network nodes (called functions in 5G) involved in the security features, the communication links to protect, etc. In both systems, the security mechanisms can be grouped into two sets.

  • The first set contains all the so-called network access security mechanisms. These are the security features that provide users with secure access to services through the device (typically a phone) and protect against attacks on the air interface between the device and the radio node (eNB in LTE and gNB in 5G)
  • The second set contains the so-called network domain security mechanisms. This includes the features that enable nodes to securely exchange signaling data and user data for example between radio nodes and core network nodes
Figure 1_Simplified security architectures of LTE and 5G

Figure 1: Simplified security architectures of LTE and 5G showing the grouping of network entities that needs to be secured in the Home Network and Visited Network and all the communication links that must be protected.

New authentication framework

A central security procedure in all generations of 3GPP networks is the access authentication, known as primary authentication in 3GPP 5G security standards. This procedure is typically performed during initial registration (known as initial attach in previous generations), for example when a device is turned on for the first time.

A successful run of the authentication procedure leads to the establishment of sessions keys, which are used to protect the communication between the device and the network. The authentication procedure in 3GPP 5G security has been designed as a framework to support the extensible authentication protocol (EAP) – a security protocol specified by the Internet Engineering Task Force (IETF) organization. This protocol is well established and widely used in IT environments.

The advantage of this protocol is that it allows the use of different types of credentials besides the ones commonly used in mobile networks and typically stored in the SIM card, such as certificates, pre-shared keys, and username/password. This authentication method flexibility is a key enabler of 5G for both factory use-cases and other applications outside the telecom industry.

The support of EAP does not stop at the primary authentication procedure, but also applies to another procedure called secondary authentication. This is executed for authorization purposes during the set-up of user plane connections, for example to surf the web or to establish a call. It allows the operator to delegate the authorization to a third party. The typical use case is the so-called sponsored connection, for example towards your favorite streaming or social network site and where other existing credentials (e.g. username/password) can be used to authenticate the user and authorize the connection. The use of EAP allows to cater to the wide variety of credentials types and authentication methods deployed and used by common application and service providers.

Enhanced subscriber privacy

Security in the 3GPP 5G standard significantly enhances protection of subscriber privacy against false base stations, popularly known as IMSI catchers or Stingrays. In summary, it has been made very impractical for false base stations to identify and trace subscribers by using conventional attacks like passive eavesdropping or active probing of permanent and temporary identifiers (SUPI and GUTI in 5G). This is detailed in our earlier blog post about 5G cellular paging security, as well as our earlier post published in June 2017.

In addition, 5G is proactively designed to make it harder for attackers to correlate protocol messages and identify a single subscriber. The design is such that only a limited set of information is sent as cleartext even in initial protocol messages, while the rest is always concealed. Another development is a general framework for detecting false base stations, a major cause for privacy concerns. The detection, which is based on the radio condition information reported by devices on the field, makes it considerably more difficult for false base stations to remain stealthy.

Service based architecture and interconnect security

5G has brought about a paradigm shift in the architecture of mobile networks, from the classical model with point-to-point interfaces between network function to service-based interfaces (SBI). In a service-based architecture (SBA), the different functionalities of a network entity are refactored into services exposed and offered on-demand to other network entities.

The use of SBA has also pushed for protection at higher protocol layers (i.e. transport and application), in addition to protection of the communication between core network entities at the internet protocol (IP) layer (typically by IPsec). Therefore, the 5G core network functions support state-of-the-art security protocols like TLS 1.2 and 1.3 to protect the communication at the transport layer and the OAuth 2.0 framework at the application layer to ensure that only authorized network functions are granted access to a service offered by another function.

The improvement provided by 3GPP SA3 to the interconnect security (i.e. security between different operator networks) consists of three building blocks:

  • Firstly, a new network function called security edge protection proxy (SEPP) was introduced in the 5G architecture (as shown in figure 2). All signaling traffic across operator networks is expected to transit through these security proxies
  • Secondly, authentication between SEPPs is required. This enables effective filtering of traffic coming from the interconnect
  • Thirdly, a new application layer security solution on the N32 interface between the SEPPs was designed to provide protection of sensitive data attributes while still allowing mediation services throughout the interconnect

The main components of SBA security are authentication and transport protection between network functions using TLS, authorization framework using OAuth2, and improved interconnect security using a new security protocol designed by 3GPP.

Figure 2: Simplified service-based architecture for the 5G system in the roaming case

Figure 2: Simplified service-based architecture for the 5G system in the roaming case

Integrity protection of the user plane

In 5G, integrity protection of the user plane (UP) between the device and the gNB, was introduced as a new feature. Like the encryption feature, the support of the integrity protection feature is mandatory on both the devices and the gNB while the use is optional and under the control of the operator.

It is well understood that integrity protection is resource demanding and that not all devices will be able to support it at the full data rate. Therefore, the 5G System allows the negotiation of which rates are suitable for the feature. For example, if the device indicates 64 kbps as its maximum data rate for integrity protected traffic, then the network only turns on integrity protection for UP connections where the data rates are not expected to exceed the 64-kbps limit.

Learn more about security standardization

The security aspects are under the remits of one of the different working groups of 3GPP called SA3. For the 5G system, the security mechanisms are specified by SA3 in TS 33.501. Ericsson has been a key contributor to the specification work and has driven several security enhancements such as flexible authentication, subscriber privacy and integrity protection of user data.

Learn more about our work across network standardization.

Explore the latest trending security content on our telecom security page.

Source: https://www.ericsson.com/en/blog/2019/7/3gpp-5g-security-overview

5G mobile networks: A cheat sheet

17 Aug

As LTE networks become increasingly saturated, mobile network operators are planning for the 5G future. Here is what business professionals and mobile users need to know about 5G networks.

What is 5G?

5G refers to the fifth generation of mobile phone networks. Since the introduction of the first standardized mobile phone network in 1982, succeeding standards have been adopted and deployed approximately every nine years. GSM, the 2nd generation wireless network, was first deployed in 1992, while a variety of competing 3G standards began deployment in 2001. The 4G LTE wireless technology standard was deployed by service providers in 2010. Now, technology companies and mobile network operators are actively deploying 5G cellular networks around the world for new mobile devices. These 5G deployments accompany transitional LTE technologies such as LTE Advanced and LTE Advanced Pro, which are used by network operators to provide faster speeds on mobile devices.

Principally, 5G refers to “5G NR (New Radio),” which is the standard adopted by 3GPP, an international cooperative responsible for the development of the 3G UMTS and 4G LTE standards. Other 5G technologies do exist. Verizon’s 5G TF network operates on 28 and 39 GHz frequencies, and is used only for fixed wireless broadband services, not in smartphones. Verizon’s 5G TF deployments were halted in December 2018, and will be transitioned to 5G NR in the future. Additionally, 5G SIG was used by KT for a demonstration deployment during the 2018 Winter Olympics in Pyeongchang.

5G NR allows for networks to operate on a wide variety of frequencies, including the frequencies vacated by decommissioning previous wireless communications networks. The 2G DCS frequency bands, the 3G E-GSM and PCS frequency bands, and the digital dividend of spectrum vacated by the transition to digital TV broadcasts are some of the bands available for use in 5G NR.

5G standards divide frequencies into two groups: FR1 (450 MHz – 6 GHz) and FR2 (24 GHz – 52 GHz). Most early deployments will be in the FR1 space. Research is ongoing into using FR2 frequencies, which are also known as extremely high frequency (EHF) or millimeter wave (mmWave) frequencies. Discussions of the suitability of millimeter wave frequencies have been published in IEEE journals as far back as 2013.

Millimeter wave frequencies allow for faster data speeds, though they do come with disadvantages. Because of the short distance of communication, millimeter wave networks have a much shorter range; for densely-populated areas, this requires deploying more base stations (conversely, this makes it well suited to densely-populated places such as arenas and stadiums). While this would be advantageous in certain use cases, it would be a poor fit for use in rural areas. Additionally, millimeter wave communication can be susceptible to atmospheric interference. Effects such as rain fade make it problematic for outdoor use, though even nearby foliage can disrupt a signal.

Tests of early 5G mmWave networks by sister site CNET surfaced a number of performance problems, with the Moto Z3Samsung Galaxy S10 5G, and LG V50 depleting their battery faster than on 4G networks. In the case of the Moto Z3—which uses a pogo-pin connected Moto Mod add-on to deliver 5G—four hours of testing completely drained the battery in the attachment; the use of sub-6 GHz 5G networks is expected to lessen this effect. Likewise, increased efficiency in Qualcomm’s upcoming Snapdragon X55 modem will alleviate some performance issues.

It is vital to remember that 5G is not an incremental or backward-compatible update to existing mobile communications standards. It does not overlap with 4G standards like LTE or WiMAX, and it cannot be delivered to existing phones, tablets, or wireless modems by means of tower upgrades or software updates, despite AT&T’s attempts to brand LTE Advanced as “5G E.”While upgrades to existing LTE infrastructure are worthwhile and welcome advances, these are ultimately transitional 4G technologies and do not provide the full range of benefits of 5G NR.

For an overview of when 5G smartphones are being released, as well as the benefits and drawbacks of 5G smartphones, check out TechRepublic’s cheat sheet about 5G smartphones.

What constitutes 5G technology?

For mobile network operators, the 3GPP has identified three aspects for which 5G should provide meaningful advantages over existing wireless mobile networks. These three heterogenous service types will coexist on the same infrastructure using network slicing, allowing network operators to create multiple virtual networks with differing performance profiles for differing service needs.

eMBB (Enhanced Mobile Broadband)

Initial deployments of 5G NR focused on eMBB, which provides greater bandwidth, enabling improved download and upload speeds, as well as moderately lower latency compared to 4G LTE. eMBB will be instrumental in enabling rich media applications such as mobile AR and VR, 4K and 360° video streaming, and edge computing.

URLLC (Ultra Reliable Low-Latency Communications)

URLLC is targeted toward extremely latency sensitive or mission-critical use cases, such as factory automation, robot-enabled remote surgery, and driverless cars. According to a white paper (PDF link) by Mehdi Bennis, Mérouane Debbah, and H. Vincent Poor of the IEEE, URLLC should target 1ms latency and block error rate (BLER) of 10−9 to 10−5, although attaining this “represents one of the major challenges facing 5G networks,” as it “introduces a plethora of challenges in terms of system design.”

Technologies that enable URLLC are still being standardized; these will be published in 3GPP Release 16, scheduled for mid-2020.

mMTC (Massive Machine Type Communications)

mMTC is a narrowband access type for sensing, metering, and monitoring use cases. Some mMTC standards that leverage LTE networks were developed as part of 3GPP Release 13, including eMTC (Enhanced Machine-Type Communication) and NB-IoT (Narrowband IoT). These standards will be used in conjunction with 5G networks, and extended to support the demands of URLLC use cases on 5G networks and frequencies in the future.

The ways in which 5G technologies will be commercialized are still being debated and planned among mobile network operators and communications hardware vendors. As different groups have differing priorities, interests, and biases, including spectrum license purchases made with the intent of deploying 5G networks, the advantages of 5G will vary between different geographical markets and between consumer and enterprise market segments. While many different attributes are under discussion, 5G technology may consist of the following (the attributes are listed in no particular order).

Proactive content caching

Particularly for millimeter wave 5G networks, which require deploying more base stations compared to LTE and previous communications standards, those base stations in turn require connections to wired backhauls to transmit data across the network. By providing a cache at the base station, access delays can be minimized, and backhaul load can be reduced. This has the added benefit of reducing end-to-end delay. As 4K video streaming services—and smartphones with 4K screens—become more widespread, this caching capability will be important to improve quality of service.

Multiple-hop networks and device-to-device communication

In LTE networks, cellular repeaters and femtocells bridge gaps in areas where signal strength from traditional base stations is inadequate to serve the needs of customers. These can be in semi-rural areas where population density complicates serving customers from one base station, as well as in urban areas where architectural design obstructs signal strength. Using multiple-hop networks in 5G extends the cooperative relay concept by leveraging device-to-device communication to increase signal strength and availability.

Seamless vertical handover

Although proposals for 5G position it as the “one global standard” for mobile communications, allowing devices to seamlessly switch to a Wi-Fi connection, or fall back to LTE networks without delay, dropped calls, or other interruptions, is a priority for 5G.

Who does 5G benefit?

Remote workers / off-site job locations

One of the major focuses of 5G is the ability to use wireless networks to supplant traditional wireline connections by increasing data bandwidth available to devices and minimizing latency. For telecommuters, this greatly increases flexibility in work locations, allowing for cost-effective communication with your office, without being tied to a desk in a home office with a wireline connection.

For situations that involve frequently changing off-site job locations, such as location movie shoots or construction sites, lower technical requirements for 5G deployment allow for easily set up a 5G connection to which existing devices can connect to a 5G router via Wi-Fi. For scenes of live breaking news, 5G technologies can be used to supplant the traditional satellite truck used to transmit audio and video back to the newsroom. Spectrum formerly allocated to high-speed microwave satellite links has been repurposed for 5G NR communication.

Internet of Things (IoT) devices

One priority for the design of 5G networks is to lower barriers to network connectivity for IoT devices. While some IoT devices (e.g., smartwatches) have LTE capabilities, the practical limitations of battery sizes that can be included in wearable devices and the comparatively high power requirements of LTE limit the usefulness of mobile network connectivity in these situations. Proposals for 5G networks focusing on reducing power requirements, and the use of lower-power frequencies such as 600 MHz, will make connecting IoT devices more feasible.

Smart cities, office buildings, arenas, and stadiums

The same properties that make 5G technologies a good fit for IoT devices can also be used to improve the quality of service for situations in which large numbers of connected devices make extensive use of the mobile network in densely populated areas. These benefits can be realized easily in situations with variable traffic—for instance, arenas and stadiums are generally only populated during sporting events, music concerts, and other conventions. Large office towers, such as the 54-story Mori Tower in Tokyo’s Roppongi Hills district, are where thousands of employees work during the week. Additionally, densely populated city centers can benefit from the ability of 5G networks to provide service to more devices in physically smaller spaces.

When and where are 5G rollouts happening?

Early technical demonstrations

The first high-profile 5G rollout was at the 2018 Winter Olympic Games in Pyeongchang, South Korea. KT (a major mobile network operator) Samsung, and Intel collaborated to deliver gigabit-speed wireless broadband, and low-latency live streaming video content. During the games, 100 cameras were positioned inside the Olympic Ice Arena, which transmitted the video to edge servers, then to KT’s data center to be processed into “time-sliced views of the athletes in motion,” and then transmitted back to 5G-connected tablets for viewing. This demonstration used prototype 5G SIG equipment, which is distinct from the standardized 5G NR hardware and networks being commercialized worldwide.

Similarly, Intel and NTT Docomo have announced a partnership to demonstrate 5G technology at the 2020 Tokyo Olympic Games. The companies will use 5G networks for 360-degree, 8K-video streaming, drones with HD cameras, and smart city applications, including “pervasive facial recognition, useful for everything from stadium access to threat reduction.”

Other 5G tests and rollouts have occurred worldwide. Ericsson and Intel deployed a 5G connection to connect Tallink cruise ships to the Port of Tallinn in Estonia. Huawei and Intel demonstrated 5G interoperability tests at Mobile World Congress 2018. In China, ZTE conducted tests in which the company achieved speeds in excess of 19 Gbps on a 3.5 GHz base station. Additionally, in tests of high-frequency communications, ZTE exceeded 13 Gbps using a 26 GHz base station, and a latency of 0.416 ms in a third test for uRLLC.

Where is 5G available in the US?

Verizon Wireless deployed mmWave-powered 5G, marketed as “Ultra Wideband (UWB),” in Chicago, IL and Minneapolis, MN on April 3, 2019; in Denver, CO on June 27, 2019; in Providence, RI on July 1, 2019; in St. Paul, MN on July 18, 2019; and in Atlanta, GA, Detroit, MI, Indianapolis, IN, and Washington, DC on July 31, 2019.

Future deployments of Verizon’s 5G services have been announced for Boston, MA, Charlotte, NC, Cincinnati, Cleveland, and Columbus, OH, Dallas, TX, Des Moines, IA, Houston, TX, Little Rock, AR, Memphis, TN, Phoenix, AZ, Providence, RI, San Diego, CA, and Salt Lake City, UT, as well as Kansas City, by the end of 2019.

Verizon Wireless started deployments of its 5G fixed wireless internet service on October 1, 2018 in Los Angeles and Sacramento, CA, Houston, TX, and Indianapolis, IN. Verizon’s initial 5G network deployments use its proprietary 5G TF hardware, though the company plans to transition these networks to 5G NR in the future. Verizon’s 5G TF network is only used for home internet service, not in smartphones.

AT&T has active 5G deployments in Atlanta, GA, Austin, Dallas, Houston, San Antonio, and Waco, TX, Charlotte, NC, Indianapolis, IN, Jacksonville and Orlando, FL, Las Vegas, NV, Los Angeles, San Diego, San Francisco, and San Jose, CA, Louisville, KY, Nashville, TN, New Orleans, LA, New York City, NY, Oklahoma City, OK, and Raleigh, NC. Deployments have also been announced for Chicago, IL, Cleveland, OH, and Minneapolis, MN.

AT&T has deployed LTE Advanced nationwide; the company is marketing LTE Advanced as a “5G Evolution” network, though LTE-Advanced is not a 5G technology. AT&T has a history of mislabeling network technologies; the company previously advertised the transitional HSDPA network as 4G, though this is commonly considered to be an “enhanced 3G” or “3.5G” standard.

Sprint started deployments of 5G on May 30, 2019 in the Dallas / Ft. Worth and Houston, TX, Kansas City / Overland Park, KS, and Atlanta, GA metro areas. Sprint’s 5G networks run on 2.5 GHz, providing more widespread coverage throughout a region than is possible on line-of-sight mmWave connections, though with a modest decrease in speed compared to mmWave networks. Sprint activated 5G service in Chicago on July 11, 2019. The company has also announced plans to deploy 5G in Los Angeles, CA, New York, NY, Phoenix, AZ, and Washington, DC.

T-Mobile USA has active 5G services in Atlanta, GA and Cleveland, OH, with future plans to bring 5G services to Dallas, TX, Los Angeles, CA, Las Vegas, NV, and New York, NY. T-Mobile’s deployment is powered by Ericcson AIR 3246 modems, which support both 4G LTE and 5G NR. This equipment allows for 5G and LTE networks to be operated from the same equipment.

The purchase of Sprint by T-Mobile has been approved by the Justice Department, though a multi-state lawsuit is aiming to prevent the deal from proceeding. If the merger goes forward, “only the New T-Mobile will be able to deliver… real, game-changing 5G,” according to T-Mobile CEO John Legere in a June 2019 blog post. Following a merger, the New T-Mobile will have 600 MHz low-band, 2.5 GHz mid-band, and mmWave spectrum holdings, putting it at an advantage relative to AT&T and Verizon.

Where is 5G available in the UK?

EE debuted 5G services in Belfast, Birmingham, Cardiff, Edinburgh, London, and Manchester on May 30, 2019. Availability of 5G by the end of 2019 is planned for Bristol, Coventry, Glasgow, Hull, Leeds, Leicester, Liverpool, Newcastle, Nottingham, and Sheffield. Availability of 5G in 2020 is planned for Aberdeen, Cambridge, Derby, Gloucester, Peterborough, Plymouth, Portsmouth, Southampton, Wolverhampton, and Worcester.

BT, which owns EE, is anticipated to deploy separate BT-branded 5G services in London, Manchester, Edinburgh, Birmingham, Cardiff, and Belfast in autumn 2019.

Vodafone provides 5G services in Birkenhead, Birmingham, Bolton, Bristol, Cardiff, Gatwick, Glasgow, Lancaster, Liverpool, London, Manchester, Newbury, Plymouth, Stoke-on-Trent, and Wolverhampton at present, with deployments planned for Blackpool, Bournemouth, Guildford, Portsmouth, Reading, Southampton, and Warrington by the end of 2019.

Three will begin rollout of 5G services in London in August 2019, with services for Birmingham, Bolton, Bradford, Brighton, Bristol, Cardiff, Coventry, Derby, Edinburgh, Glasgow, Hull, Leeds, Leicester, Liverpool, Manchester, Middlesbrough, Milton Keynes, Nottingham, Reading, Rotherham, Sheffield, Slough, Sunderland, and Wolverhampton expected before the end of the year.

Three and Vodafone do not charge a premium for 5G network services in the UK, compared to their rate plans for 4G.

O₂ announced availability of 5G services for Belfast, Cardiff, Edinburgh, London, Slough, and Leeds “from October 2019,” with plans to bring expand 5G services to “parts of 20 towns and cities, before rolling out to a total of 50 by summer 2020.”

Where is 5G available in Australia?

Optus has 100 5G-capable sites in service, and has pledged to build 1,200 by March 2020.

Telstra commenced rollout of 5G networks, starting with the Gold Coast in August 2018. Telstra services select neighborhoods in Adelaide, Brisbane, Canberra, Gold Coast, Hobart, Launceston, Melbourne, Perth, Sydney, and Toowoomba.

Australia’s National Broadband Network (NBN) operator has declared its intent to provide 5G fixed wireless internet access in a statement to ZDNet.

Chinese vendors Huawei and ZTE have been banned by the Australian government from providing 5G networking equipment to mobile network operators due to national security concerns.

Where else in the world is 5G available?

South Korea was the first country to have a commercially available 5G network, with SK Telecom, KT, and LG Uplus activating 5G networks on April 3, 2019, two hours before Verizon Wireless activated 5G in the US, according to ZDNet’s Cho Mu-Hyun. By April 30, 2019, 260,000 subscribers in South Korea were using 5G networks. KT, the country’s second-largest mobile carrier, is working on deployments of in-building repeaters for use in crowded buildings such as airports and train stations.

5G is also seen as vital for economic development among Gulf states, with Saudi Arabia including 5G as part of the Vision 2030 economic development plan, and Qatari network operator Ooredoo claiming “the first commercially available 5G network in the world” on May 14, 2018, prior to the availability of smartphones that can use 5G.

Ookla maintains a map of 5G network services worldwide, with networks categorized into Commercial Availability, Limited Availability, and Pre-Release to demonstrate the extent of availability for each observed deployment.

How does a 5G future affect enterprises and mobile users?

As technology advances, older devices will inevitably reach end-of-life; in the mobile space, this is an outsized concern, as wireless spectrum is a finite resource. Much in the same way that the digital switchover occurred for over-the-air TV broadcasts, older mobile networks are actively being dismantled to free spectrum for next-generation networks, including transitional LTE Advanced, LTE Advanced Pro, and “true” 5G networks.

In the US, AT&T disabled its 2G network on January 1, 2017, rendering countless feature phones—as well as the original iPhone—unusable. Verizon plans to disable its legacy 2G and 3G networks by the end of 2019, which will render most feature phones and older smartphones unusable, as well as IoT devices such as water meters. Verizon stopped activations of 3G-only phones in July 2018. End-of-life plans for the 2G networks of Sprint and T-Mobile have not been publicly disclosed.

Additionally, as 5G is used increasingly to deliver wireless broadband, wireline broadband providers will face competition as the two services approach feature parity. With many people using smartphones both as their primary computing device and for tethering a traditional computer to the internet, the extra cost of a traditional wireline connection may become unnecessary for some people, and enable those outside the reach of traditional wireline connections to have affordable access to high-speed for the first time.

Business customers may also integrate 5G technology in proximity-targeted marketing. 5G’s reliance on microcells can be used as a secondary means of verification to protect against GPS spoofing, making proximity-targeted marketing resistant to abuse.

As 5G specifications are designed around the needs of businesses, the low-power and low-latency attributes are expected to spark a revolution in IoT deployments. According to Verizon Wireless President Ronan Dunne, 5G will enable the deployment of 20 billion IoT devices by 2020, leading to the creation of the “industrial internet,” affecting supply chain management, as well as agriculture and manufacturing industries. These same attributes also make 5G well suited to use cases that require continuous response and data analysis, such as autonomous vehicles, traffic control, and other edge computing use cases.

Source: https://clearcritique.com/5g-mobile-networks-a-cheat-sheet/

3GPP Burns Midnight Oil for 5G

10 Sep

Long hours, streamlined features to finish draft. The race is on to deliver some form of 5G as soon as possible.

An Intel executive painted a picture of engineers pushing the pedal to the metal to complete an early version of the 5G New Radio (NR) standard by the end of the year. She promised that Intel will have a test system based on its x86 processors and FPGAs as soon as the spec is finished.

The 3GPP group defining the 5G NR has set a priority of finishing a spec for a non-standalone version by the end of the year. It will extend existing LTE core networks with a 5G NR front end for services such as fixed-wireless access.

After that work is finished, the radio-access group will turn its attention to drafting a standalone 5G NR spec by September 2018.

“Right now, NR non-standalone is going fine with lots of motivation, come hell or high water, to declare a standard by the end of December,” said Asha Keddy, an Intel vice president and general manager of its next-generation and standards group. “The teams don’t even break until 10 p.m. on many days, and even then, sometimes they have sessions after dinner.”

To lighten the load, a plenary meeting of the 3GPP radio-access group next week is expected to streamline the proposed feature set for non-standalone NR. While a baseline of features such as channel coding and subcarrier spacing have been set, some features are behind schedule for being defined, such as MIMO beam management, said Keddy.

It’s hard to say what features will be in or out at this stage, given that decisions will depend on agreement among carriers. “Some of these are hit-or-miss, like when [Congress] passes a bill,” she said.

It’s not an easy job, given the wide variety of use cases still being explored for 5G and the time frames involved. “We are talking about writing a standard that will emerge in 2020, peak in 2030, and still be around in 2040 — it’s kind of a responsibility to the future,” she said.

The difficulty is even greater given carrier pressure. For example, AT&T and Verizon have announced plans to roll out fixed-wireless access services next year based on the non-standalone 5G NR, even though that standard won’t be formally ratified until late next year.

N

An Intel 5G test system in the field. (Images: Intel)

An Intel 5G test system in the field. (Images: Intel)

Companies such as Intel and Qualcomm have been supplying CPU- and FPGA-based systems for use in carrier trials. They have been updating the systems’ software to keep pace with developments in 3GPP and carrier requests.

For its part, Intel has deployed about 200 units of its 5G test systems to date. They will be used on some of the fixed-wireless access trials with AT&T and Verizon in the U.S., as well as for other use cases in 5G trials with Korea Telecom and NTT Docomo in Japan.

Some of the systems are testing specialized use cases in vertical markets with widely varied needs, such as automotive, media, and industrial, with companies including GE and Honeywell. The pace of all of the trials is expected to pick up next year once the systems support the 5G non-standalone spec.

Intel’s first 5G test system was released in February 2016 supporting sub-6-GHz and mm-wave frequencies. It launched a second-generation platform with integrated 4×4 MIMO in August 2016.

The current system supports bands including 600–900 MHz, 3.3–4.2 GHz, 4.4–4.9 GHz, 5.1–5.9 GHz, 28 GHz, and 39 GHz. It provides data rates up to 10 Gbits/second.

Keddy would not comment on Intel’s plans for dedicated silicon for 5G either in smartphones or base stations.

In January, Intel announced that a 5G modem for smartphones made in its 14-nm process will sample in the second half of this year. The announcement came before the decision to split NR into the non-standalone and standalone specs.

Similarly, archrival Qualcomm announced late last year that its X50 5G modem will sample in 2017. It uses eight 100-MHz channels, a 2×2 MIMO antenna array, adaptive beamforming techniques, and 64 QAM to achieve a 90-dB link budget and works with a separate 28-GHz transceiver and power management chips.

Source: http://www.eetimes.com/document.asp?doc_id=1332248&page_number=2

Why the industry accelerated the 5G standard, and what it means

17 Mar

The industry has agreed, through 3GPP, to complete the non-standalone (NSA) implementation of 5G New Radio (NR) by December 2017, paving the way for large-scale trials and deployments based on the specification starting in 2019 instead of 2020.

Vodafone proposed the idea of accelerating development of the 5G standard last year, and while stakeholders debated various proposals for months, things really started to roll just before Mobile World Congress 2017. That’s when a group of 22 companies came out in favor of accelerating the 5G standards process.

By the time the 3GPP RAN Plenary met in Dubrovnik, Croatia, last week, the number of supporters grew to more than 40, including Verizon, which had been a longtime opponent of the acceleration idea. They decided to accelerate the standard.

At one time over the course of the past several months, as many as 12 different options were on the table, but many operators and vendors were interested in a proposal known as Option 3.

According to Signals Research Group, the reasoning went something like this: If vendors knew the Layer 1 and Layer 2 implementation, then they could turn the FGPA-based solutions into silicon and start designing commercially deployable solutions. Although operators eventually will deploy a new 5G core network, there’s no need to wait for a standalone (SA) version—they could continue to use their existing LTE EPC and meet their deployment goals.

“Even though a lot of work went into getting to this point, now the real work begins. 5G has officially moved from a study item to a work item in 3GPP.”

Meanwhile, a fundamental feature has emerged in wireless networks over the last decade, and we’re hearing a lot more about it lately: The ability to do spectrum aggregation. Qualcomm, which was one of the ring leaders of the accelerated 5G standard plan, also happens to have a lot of engineering expertise in carrier aggregation.

“We’ve been working on these fundamental building blocks for a long time,” said Lorenzo Casaccia, VP of technical standards at Qualcomm Technologies.

Casaccia said it’s possible to aggregate LTE with itself or with Wi-Fi, and the same core principle can be extended to LTE and 5G. The benefit, he said, is that you can essentially introduce 5G more casually and rely on the LTE anchor for certain functions.

In fact, carrier aggregation, or CA, has been emerging over the last decade. Dual-carrier HSPA+ was available, but CA really became popularized with LTE-Advanced. U.S. carriers like T-Mobile US boast about offering CA since 2014 and Sprint frequently talks about the ability to do three-channel CA. One can argue that aggregation is one of the fundamental building blocks enabling the 5G standard to be accelerated.

Of course, even though a lot of work went into getting to this point, now the real work begins. 5G has officially moved from a study item to a work item in 3GPP.

Over the course of this year, engineers will be hard at work as the actual writing of the specifications needs to happen in order to meet the new December 2017 deadline.

AT&T, for one, is already jumping the gun, so to speak, preparing for the launch of standards-based mobile 5G as soon as late 2018. That’s a pretty remarkable turn of events given rival Verizon’s constant chatter about being first with 5G in the U.S.

Verizon is doing pre-commercial fixed broadband trials now and plans to launch commercially in 2018 at last check. Maybe that will change, maybe not.

Historically, there’s been a lot of worry over whether other parts of the world will get to 5G before the U.S. Operators in Asia in particular are often proclaiming their 5G-related accomplishments and aspirations, especially as it relates to the Olympics. But exactly how vast and deep those services turn out to be is still to be seen.

Further, there’s always a concern about fragmentation. Some might remember years ago, before LTE sort of settled the score, when the biggest challenge in wireless tech was keeping track of the various versions: UMTS/WCDMA, HSPA and HSPA+, cdma2000, 1xEV-DO, 1xEV-DO Revision A, 1xEV-DO Revision B and so on. It’s a bit of a relief to no longer be talking about those technologies. And most likely, those working on 5G remember the problems in roaming and interoperability that stemmed from these fragmented network standards.

But the short answer to why the industry is in such a hurry to get to 5G is easy: Because it can.

Like Qualcomm’s tag line says: Why wait? The U.S. is right to get on board the train. With any luck, there will actually be 5G standards that marketing teams can legitimately cite to back up claims about this or that being 5G. We can hope.

Source: http://www.fiercewireless.com/tech/editor-s-corner-why-hurry-to-accelerate-5g

Another course correction for 5G: network operators want closer NFV collaboration

9 Mar
  • Last week 22 operators and vendors (the G22) pushed for a 3GPP speed-up
  • This week an NFV White Paper: this time urging closer 5G & NFV interworking 
  • 5G should support ‘cloud native’ functions to optimise reuse

Just over four years ago, in late 2012, the industry was buzzing with talk of network functions virtualization (NFV). With the publication of the NFV White Paper and the establishment of the ETSI ISG, what had been a somewhat academic topic was suddenly on a timeline. And it had a heavyweight set of carrier backers and pushers who were making it clear to the vendor community that they expected it to “play nice” and to design, test and produce NFV solutions in a spirit of coopetition.

By most accounts the ETSI NFV effort has lived up to and beyond expectations. NFV is here and either in production or scheduled for deployment by most of the world’s telcos.

Four years later, with 5G now just around the corner, another White Paper has been launched. This time its objective is to urge both NFV and 5G standards-setters to properly consider operator requirements and priorities for the interworking of NFV and 5G, something they maintain is critical for network operators who are basing their futures on the successful convergence of the two sets of technologies.

NFV_White_Paper_5G is, the authors say, completely independent of the NFV ISG, is not an NFV ISG document and is not endorsed by it. The 23 listed network operators who have put their names to the document include Cablelabs, Bell Canada, DT, Chinas Mobile and Unicom, BT, Orange, Sprint, Telefonica and Vodafone.

Many of the telco champions of the NFV ISG are authors; in particular Don Clarke, Diego López and Francisco Javier Ramón Salguero, Bruno Chatras and Markus Brunner.

The paper points out that if NFV was a solution looking for a problem, then 5G is just the sort of complex problem it requires. Taken together, 5G’s use cases imply a need for high scalability, ultra-low latency, an ability to support multiple concurrent sessions; ultra-high reliability and high security. It points out that each 5G use case has significantly different characteristics and demands specific combinations of these requirements to make it work. NFV has the functions which can satisfy the use cases: things like Network Slicing, Edge Computing, Security, Reliability, and Scalability are all there and ready to be put to work.

As NFV is explicitly about separating data and control planes to provide a flexible, future-proofed platform for whatever you want to run over it, then 5G and NFV would seem, by definition, to be perfect partners already.

Where’s the issue?

What seems to be worrying the NFV advocates is that an NFV-based infrastructure designed for 5G needs to go further if it’s to meet carriers’ broader network goals. That means it will be tasked to not only enable 5G, but also support other applications –  many spawned by 5G but others simply ‘fixed’ network applications evolving from the existing network.

Then there’s a problem of reciprocity. Again, if the NFV ISG is to support that broader set of purposes and possible developments, not only should it work with other bodies to identify and address gaps for it to support; the process should be two-way.

One of the things the operators behind the paper seem most anxious to avoid is wasteful duplication of effort. So they want to encourage identity and reuse of “common technical NFV features”  to avoid that happening.

“Given that the goal of NFV is to decouple network functions from hardware, and virtualized    network functions are designed to run in a generic IT cloud    environment, cloud-native design principles and cloud-friendly licensing models are critical matters,” says the paper.

The NFV ISG has very much developed its thinking around those so-called ‘Cloud-native’ functions instead of big fat monolithic ones (which are often just re-applications of proprietary ‘non virtual’ functions). By contrast ‘cloud native’ is where functions are decomposed into reusable components which gives the approach all sorts of advantages.  Obviously a smooth interworking of NFV and 5G won’t be possible if 5G doesn’t follow this approach too.

As you would expect there has been outreach between the standards groups already, but clearly a few specialist chats at industry body meetings are not seen, by these operator representatives at least, as enough to ensure proper convergence of NFV and 5G. Real compromises will have to sought and made.

Watch Preparing for 5G: what should go on the CSP ‘to do’ list?

Source: http://www.telecomtv.com/articles/5g/another-course-correction-for-5g-network-operators-want-closer-nfv-collaboration-14447/
Picture: via Flickr © Malmaison Hotels & Brasseries (CC BY-ND 2.0)

Analyst Angle: 5G empowering vertical industries

10 Mar

Standards work on “5G” technology began in late 2015, and the first commercial networks probably won’t launch until 2020 at the earliest. But it’s not too early to begin pondering what 5G could mean for verticals such as health care, manufacturing, smart cities and automotive.

One reason is because some of these industries make technological decisions several years out. Automakers, for example, will need to decide in the next year or two whether to equip their 2021 models with LTE-Advanced Pro or add support for 5G, too. Another reason is because understanding 5G’s capabilities today – even at a high level – enables businesses and governments to start developing applications that can take advantage of the technology’s high speeds, low latency and other key features.

As they collaborate on 5G standards, cellular vendors and mobile operators should pay close attention to those users’ visions and requirements according to a white paper commissioned by the European Commission and produced by the 5GPP (more information at https://5g-ppp.eu). If 5G falls short in key areas such as latency, reliability and quality-of-service mechanisms, the cellular industry risks losing some of those users – and their money – to alternatives such as Wi-Fi. A prime example is HaLow, formerly known as 802.11ah, which Maravedis believes is potentially a very disruptive technology.

The International Telecommunications Union, 3GPP and other organizations developing 5G have set several goals for the new technology, including:

  • Guaranteed speeds of at least 50 megabits per second, per user, which is ideal for applications such as video surveillance and in-vehicle infotainment. But it’s probably not enough if a user is actually multiple users, such as a 5G modem in a car that’s supporting multiple occupants and the vehicle’s navigation, safety and diagnostics systems.
  • The ability to maintain a connection with a device that’s moving on the ground at 500 kph or more,enabling 5G to support applications such as broadband Internet access for high-speed rail passengers. Even on the German autobahn, cars rarely move faster than 150 kph, so setting the baseline at 500 kph ensures sufficient headroom for virtually all vehicular applications.
  • Support for at least 0.75 terabytes per second of traffic in a geographic area the size of a stadium,which in theory could reduce the need for alternatives such as Wi-Fi. But in reality, mobile operators almost certainly will continue to offload a lot of 5G traffic to Wi-Fi as they do today with “4G” due to the fact licensed spectrum is, and always will be, limited and expensive.
  • The ability to support 1 million or more devices per square kilometer, an amount that’s possible in a dense urban area packed with smartphones, tablets and “Internet of Things” devices. This capability would help 5G compete against a variety of alternatives, such as Wi-Fi and ZigBee, although ultimately the choice comes down to each technology’s modem and service costs. If 5G debuts in 2020, it would take at least until late that decade for its chipset costs to decline to the point that it can compete against incumbents – including 4G – in the highly price-sensitive IoT market.
  • Five-nines reliability, which maintains telecom’s long tradition of setting five-nines as the baseline for many services. But this won’t be sufficient for some mission-critical services, such as self-driving cars and telemedicine, which may require up to 99.99999% reliability.
  • The ability to pinpoint a device’s location to an area 1 meter or smaller, a capability that could enable 5G to compete with Wi-Fi and Bluetooth for beacon-type applications. But it might not be enough for automotive applications, where 0.3-meter precision sometimes is required. Like 4G, 5G will use carrier aggregation and small cells, which together create barriers to precision location indoors because combining signals from multiple sites means a device is in a much larger area than if it were connected to only one. Some vendors are working to address this problem with 4G, and 5G could leverage that work to enable high precision.
  • Five milliseconds or less of end-to-end latency, which is sufficient for the vast majority of consumer, business and IoT applications. One factor that affects latency is whether a network is used. The latest versions of LTE support direct communications between devices, such as for public safety users in places where the cellular network is down. 5G is expected to support device-to-device communications, where the absence of network-induced latency could be useful for industrial applications that require latencies as low as 100 microseconds.

NFV and SDN in 5G

Network functions virtualization and software-defined networking are expected to enable mobile operators to leverage the cloud and replace cellular-specific infrastructure with off-the-shelf IT gear such as servers. All of these real-world experiences will help create 5G technologies that can dynamically allocate computing and storage resources to meet each application’s unique requirements for performance, reliability and other metrics, as well as each operator’s business model. For example, some mobile operators are already considering having data center providers host their radio access network, evolved packet core or both to reduce their overhead costs. 5G could make that model even more attractive.

Source: http://www.rcrwireless.com/20160309/network-infrastructure/analyst-angle-5g-empowering-vertical-industrie

LTE-A Pro for Public Safety Services – Part 1

25 Jan

In October 2015, 3GPP has decided to refer to LTE Release 13 and beyond as LTE-Advanced Pro to point out that LTE specifications have been enhanced to address new markets with special requirements such as Public Safety Services. This has been quite long in the making because a number of functionalities were required that go beyond just delivery of IP packets from point A to point B. A Nokia paper published at the end of 2014 gives a good introduction to the features required by Public Safety Services such as the police, fire departments and medical emergency services:

  • Group Communication and Push To Talk features (referred to as “Mission Critical Push To Talk” (MCPPT) in the specs, perhaps for the dramatic effect or to perhaps to distinguish them from previous specifications on the topic).
  • Priority and Quality of Service.
  • Device to Device communication and relaying of communication when the network is not available.
  • Local communication when the backhaul link of an LTE base station is not working but the base station itself is still operational.

Group Communication and Mission Critical Push to Talk have been specified as IP Multimedia Subsystem (IMS) services just like Voice over LTE (VoLTE) that is being introduced in commercial LTE networks these days and can use the eMBMS (evolved Mobile Broadcast Multicast Service) extension in case many group participants are present in the same cell to only send a voice stream in the downlink once instead of separately to each individual device.

In a previous job I’ve worked on the GSM group call and push to talk service and other safety related features for railways for a number of years so all of this sounds very familiar. In fact I haven’t come across a single topic that wasn’t already discussed at that time for GSM and most of them were implemented and are being used by railway companies across Europe and Asia today. While the services are pretty similar, the GSM implementation is, as you can probably imagine, quite different from what has now been specified for LTE.

There is lots to discover in the LTE-A Pro specifications on these topics and I will go into more details both from a theoretical and practical point of view in a couple of follow up posts.

Source: http://mobilesociety.typepad.com/mobile_life/2016/01/lte-a-pro-for-public-safety-services-part-1.html

LTE throughput

21 Jan

In this lab session we’ll interactively investigate some of the characteristics of 4G Long Term Evolution (LTE) communication which impact the throughput.

Introduction

You will be using actual hardware (and no simulations) to experiment with different settings and features of LTE (Long Term Evolution, based on 3GPP standards) when deploying your own 4G cellular network. By using this hardware to solve multiple questions in a set of well-thought-out exercise scenarios, you will gain a better insight in the different aspects which impact the achievable throughput of LTE.

Live experimentation

The wireless nodes you will be using are part of the iMinds w-iLab.t Zwijnaardetestbed (a.k.a. “wilab2”), which is physically located at the Zwijnaarde campus in Belgium but can be configured, managed and tested completely from within the web interface you are currently using. This web interface itself is controlling the wireless nodes and is also dynamically created and hosted at the iMinds Virtual Wall testbed, which is physically located at the Zuiderpoort offices (Ghent) in Belgium.

These so called FIRE (Future Internet Research and Experimentation) testbeds can also be used in research projects to collaborate with industry partners to e.g. study and improve LTE functionality. The configuration and experiments that you will perform during this lab session do conceptually not differ from the LTE deployment of your own mobile telecom operator.

The configuration of the hardware at the testbed is automatically done using a process called provisioning. This includes the reservation of machines in the wireless testbed with the appropriate hardware, installing the required operating system and tools, and making these machines available through SSH (secure shell). You can view the status of the required hardware in the box below. You can check the availability and/or ask to start the provisioning process.

Usage of iMinds iLab.t Virtual Wall and w-iLab.t

Provisioning

The experiment nodes are available.

LTE concepts

LTE, an abbreviation for Long-Term Evolution, commonly marketed as 4G (‘the fourth generation’), is a standard for wireless communication of high-speed data for mobile phones and data terminals. Compared to earlier 3G technologies (e.g. UMTS/HSPA), it increases the capacity and speed by using a different radio interface together with core network improvements. The standard is developed by the 3GPP (3rd Generation Partnership Project) and was first specified in its Release 8 document series, with additional improvements and features in the succeeding Releases.

The network architecture was redesigned and simplified to an IP-based system with significantly reduced transfer latency compared to the 3G architecture. The decision to go to an all-IP system and leave the circuit-switched (CS) interface (as included in 2G and 3G) out of the LTE specifications might be considered drastic but, on the other hand, it will definitely speed up the process for moving the telecom traffic towards the packet-switched (PS) domain, which supports the idea of delivering most communications over IP, including the voice service.

The LTE wireless interface is incompatible with 2G and 3G networks, so it must be operated on a separate wireless spectrum. Both typical European cellular evolution paths (GSM-GPRS-WCDMA-HSPA, described in earlier 3GPP Releases) and American cellular evolution paths (IS95-cdma2000-1xEVDO) have now evolved to LTE and LTE-Advanced.

2G-3G-4G Evolution (source)

Architecture

Long-Term Evolution (LTE) actually only refers to the new radio interface in this evolved phase of 3G. This radio interface is one of the most important aspects as it enables the communication link between the client device and the radio access network of the mobile telecom operator. In LTE terminology, the client device (e.g. smartphones, dongles, laptops, tablets etc.) is referred to as the ‘User Equipment (UE)’ and the radio access network is called the ‘Evolved Universal Terrestrial Radio Access Network (E-UTRAN)’, which is the successor of the UTRAN radio access network in the 3G UMTS technology. The radio interface provides considerably higher data rates in a more advanced and efficient way than other earlier large-scale mobile communications systems. In order to handle all the potential capacity that LTE can deliver, the core network side also had to be modified. This new core network is called the ‘Evolved Packet Core (EPC)’ or ‘SAE (System Architecture Evolution)’. The complete ecosystem of the UE client device, the E-UTRAN radio access network and the EPC core network (thus including the LTE radio interface as well) is called the ‘Evolved Packet System (EPS)’. When one is talking or writing about ‘LTE’, one sometimes refers to the whole EPS ecosystem, rather than strictly limiting to the radio interface.

The EPS is based on a flat architecture, meaning that there is only one element type for the radio network (the eNodeB), and one element type for the core network for the data plane (the SAE GW). The figure shows the high-level architecture of LTE and compares it with the packet-switched domain of the earlier systems.

As the architecture of the Release 7 Internet-HSPA (I-HSPA) indicates, the functions of the Radio Network Controller (RNC) have already been moved to the base station, or NodeB. The packet connection chain thus contains fewer elements than in Release 6 and previous phases of UMTS and GSM. The benefit of this simplification can be seen in the shorter signaling connections and thus in smaller round trip delays, which benefits the throughput values directly.

In LTE, the eNodeB now includes basically all the functionalities that were previously concentrated on the RNC of the UTRAN system.

Evolved Packet System (EPS)
Cellular architecture evolution (source)

Radio access network

The E-UTRAN radio access network only consists of LTE base stations, which are called eNodeB or eNB (evolved NodeB). They are also the focus of this lab session. The eNodeB now includes basically all the Radio Resource Management functionalities which were previously concentrated on the additional RNC component, outside of the base stations, of the UTRAN system in 3G. In addition, the traditional tasks of base stations are off course still included in the eNodeB element. This includes the usual tasks of transmission and reception, including modulation/demodulation, coding/decoding and multiplexing/demultiplexing. eNodeB works thus as the counterpart of the UE in the radio interface but includes procedures for decision making related to the connections. As previously shown, this solution thus results in the term ‘flat architecture’ of 4G LTE/EPS, meaning that there are less interfaces and only one element in the hierarchy of the architecture.

Whilst also possible in other technologies, the focus on femto cells (i.e. small base stations, typically intended for home or office usage) grows with LTE technology. For LTE, these are called Home eNodeBs (HeNBs). A HeNB connects to the EPC via the (fixed) Internet access that is available within a household or company. This (typically indoor) femto cell allows for an extended coverage or to offload traffic from the macro cell.

The iMinds w-iLab.t facility that you are using via this web interface has a set of HeNBs operational. It is one of these HeNB devices you will instrument during the interactive exercises.

Core network

Evolved Packet Core (EPC)(source)

3GPP Release 8 defines a new core for LTE access: the Evolved Packet Core (EPC). The EPC can also be used for other access technologies like GERAN (GSM EDGE Radio Access Network), UTRAN and CDMA2000.

The Mobility Management Entity (MME) is the equivalent of the SGSN in 2G/3G GPRS networks. In the LTE/SAE network, the MME is a pure control-plane element. It initiates a direct tunnel between the eNodeB and Serving Gateway in order to deliver the user-plane traffic.

The mobile gateway functionality is divided into the Serving Gateway (S-GW) and the Packet Data Network Gateway (P-GW or PDN-GW) functionalities. These S-GW and P-GW functionalities can be implemented in the same physical node or in two separate entities. If implemented in the same physical node, then the combined entity is often called the SAE-GW. S-GW terminates the LTE core user plane interface towards the E-UTRAN radio access network. The PDN-GW allocates the IP address for the UE. PDN-GW applies policy enforcement to the subscriber traffic and performs packet filtering at the individual user’s level (by performing, e.g., a deep-packet inspection). The PDN-GW interfaces with the service provider’s online and offline charging systems.

Home Subscriber Server (HSS) is the IMS Core Network entity that is responsible for the management of the user profiles, and performs the authentication and authorization of the users, including the new LTE subscribers. The user profiles managed by HSS consist of subscription and security information as well as details about the physical location of the user.

Policy Charging and Rules Function (PCRF) is responsible for brokering QoS Policy and Charging Policy on a per-flow basis.

Authentication, Authorization and Accounting function (AAA) is responsible for relaying authentication and authorization information to and from non-3GPP access network connected to EPC.

Within the iMinds w-iLab.t facility, all these EPC components are integrated and realisticly emulated within a single server which interfaces as a full commercial operational EPC at mobile telecom operators.

Setup and testbed usage


General setup

In the figure above the topology of your test hardware is displayed. For this course you will have access to two LTE User Equipment machines, each connected to an LTE Femtocell and the backend network.

The configuration of the eNodeB is done through the LTErf server, which provides an API for common eNodeB configuration tasks. Additionally, this machine will be used as an endpoint for our data streams between the LTE user node and the backend network.

Tools

The interactive exercises can be reproduced using manual tools if you wish to perform these exercises yourself on an LTE capable FIRE testbed. The two most important tools used in this session are IPerf and the LTErf OMF interface.

IPerf

To measure the UDP or TCP throughput on a wireless link, we are going to use the IPerf tool. IPerf reports bandwidth, delay jitter and datagram loss and has a client-server architecture. The tool is already installed on all systems. If you are reading this on a machine with IPerf installed, execute iperf --help to get a look at the command syntax, or visit the Ubuntu manpage for more information. We will further describe IPerf with some examples.

If you need to test the TCP throughput between two computers, you need to:

  • Start a server on the first computer by executing iperf -s. If all is well IPerf tells you the TCP server is listening. If at any time you want to shut down the server, presscontrol-c.
  • Make a connection to the server you just started by logging on to the second computer and executing iperf -c Wireless_IP_first_computer; The client is now sending data to the server. Wait for the test to finish.

By adding options to the client and/or server side you can configure the tests as wanted.We now give description of the meaning of the different command line options used in iperf -c 10.10.5.3 -i 1 -u -b 10M -l 900:

  • -c this machine is the client
  • -i 1 seconds between periodic bandwidth reports
  • -u test with udp traffic
  • -b 10M for UDP, bandwidth to send at in bits/sec
  • -l 900 length of buffer to read or write (= payload of UDP-packets, if using UDP)

Please note also the difference between server and client when sending UDP traffic with IPerf. The client will print to your screen the load it tries to send, while the actually achieved throughput is displayed at the server side.

LTErf

NITLab and WINLAB (Rutgers University) have developed the first version of an OMF Aggregate Manager service, ready to be installed at any similar to NITOS testbed, that enables controlling of the ip.access LTE 245F femtocells and of SiRRAN EPC Network. Currently getting and setting values from the APs and getting values from SiRRAN EPC are supported. The values that can be changed/reported are the ones that are visible to the testbed Operator and can be used for setting up an experiment.

By sending the appropriate commands to the LTE AM service, you can change parameters on the database. For instance, in order to list all available services you will hae to issue the following command:

wget -qO- "http://lterf:5054/lterf/" | xml_pp

The command should return all the available parameters that can be changed through this service. In order to query about a specific value of an LTE AP, you will have a command similar to the following one (for example the band number that is currently in use from the AP with id = 1)

 wget -qO- "http://lterf:5054/lterf/bs/get?freqBandIndicator"

The service replies with an XML formed reply. Similar to this, if the experimenter needs to change the Download link MCS profile, the command should look like:

 wget -qO- "http://lterf:5054/lterf/bs/set?MCSDl=28"

For every change to take effect, a reboot is required! The reboot command is:

 wget -qO- "http://lterf:5054/lterf/bs/restart"

Troubleshooting

The LTE equipment used by this online course is experimental research material that is under constant development. Stability is currently not always guaranteed, so if connectivity issues would arise, please use the following widget to reboot and reset the experimental equipment.

Restore connectivity

Reboot LTE client machines

Exercises

LTE throughput without interference

In these first exercises, there will only be one active LTE client, connected to one Femtocell without handovers. The following figure contains only the active components for these exercises, with the relevant IP addresses used in the different commands.


Single LTE client setup

The next three exercises allow you to inspect the effect of MCS profiles on both the upload and download speed of an LTE network. There is no need to investigate every possible value, but try to get a general feeling of the effect of the MCS profiles. Remember that each change of parameters requires the reboot of the Femtocell, taking up to two minutes.

PCRF 2

LTE throughput with interference

In this final exercise you’ll focus solely on the downstream performance of the LTE network, but with three important variables to investigate the effects of different types of interference. The full experimentation setup is reiterated in the following figure, including all relevant IP addresses.


Two interfering LTE clients

As with the previous exercises, the MCS profile of the downstream can be controlled, which will only impact the Femtocell of the primary user (Femtocell 1 and LTE Node 1). There will be an interferer active on the second Femtocell (Femtocell 2 and LTE Node 2, with a fixed MCS profile of 27) for which you can control the Transmission power of the interfering Femtocell, as well as the bandwidth of the interfering download so you can investigate the differences in interference.

Femtocell 1 will be configured to use a fixed signal power of -20 that corresponds to 7dBm. You will change the signal power of Femtocell 2, where -15 corresponds to 13dBm and -26 to 0dBm.

Take your time to investigate these variables thoroughly, looking at how a different MCS profile can cope with different types of interference.

PCRF

This course is provided by Ghent University and iMinds as part of the FORGE project, Forging Online Education through FIRE.

Source: http://forge.test.iminds.be/lte/

%d bloggers like this: