Archive | 3GPP RSS feed for this section

Here’s What 5G Means for Your Laptop and Tablet

28 Sep

5G is finally here and all the major wireless carriers are rolling out their new networks and churning out devices for the nascent technology. Naturally, everyone is advertising the blazing-fast speeds and telling us that 5G is going to change everything.

shutterstock_5g_COV2
It’s an exciting time for laptop owners as this might be the year that we see true all-day battery life. And with a multitude of folding devices launching, there’s a good chance we’ll see smartphones truly functioning as viable productivity machines, with a few wires and accessories, of course. And with Wi-Fi 6 and more powerful chips, you can expect laptops to be faster and more powerful than before.

But what exactly is 5G and how is it going to impact you in 2019 and beyond? To answer that, let’s take a look at where 5G stands today and what it should look like in the years to come.

5G: The Basics

On the most basic level, 5G stands for the fifth-generation wireless cellular standard. This will operate alongside 4G LTE for the foreseeable future and 3G for at least the next three years as carriers begin shutting down that aging networking standard. These standards are created by an organization known as the 3rd Generation Partnership Project (3GPP) which is comprised of seven telecommunications standard development organizations.

shutterstock_5g_COV

The history of these standards dates back to the late 1970s, 1G got its start in Japan in 1979 and saw its first United States. launch in 1983, this was voice-only and only became known as 1G following the release of its successor. 2G arrived in Finland in 1991, arriving two years later in the U.S., and was the first digital standard, it introduced text messaging, picture messaging, MMS, and encryption. 3G became commercially available in Japan in 2001 and in the U.S. the following year, its primary benefit was the tremendous boost in data speeds over 2G. 4G got its start in Norway in 2009 and in the U.S. in 2010, again the speed gains were the most notable benefit with seamless streaming of music and video possible for the first time.

That brings us to the present with 5G, arriving again almost a decade after its predecessor and bringing with it another considerable leap in data transfer speeds, a dramatic reduction in latency and the capacity to connect vastly more devices. While South Korea was first to a commercial launch of 5G, it was just a little bit ahead of the launch in the U.S., making this the first time the U.S. has been part of the initial launch year for a new wireless standard.

5G: The Spectrums

There are three distinct frequencies on which 5G can operate (low, mid and high band spectrums), each of them offer distinct advantages and disadvantages.

Low-band

This is the same area in which LTE operates in the U.S., below 1GHz frequencies. The advantage of low-band is that it can travel long distances and penetrate buildings. But with peak speeds at around 100 Mbps, low-band can’t offer anywhere near the speeds that mid- or high-band solutions promise. This is roughly what we are seeing from strong 4G LTE areas today, although it’s worth noting 4G isn’t limited to those speeds. So while low-band will still be relevant going forward to ensure coverage in rural areas, it won’t deliver the kind of speeds and latency advantages that most would expect from a “5G network.”

Mid-Band

In many ways, mid-band seems like the ideal solution for nationwide 5G as it still offers a reasonable range while also delivering much of the speed that 5G promises. This has been a popular option for 5G propagation throughout the rest of the world, but in the U.S., available mid-band spectrum is extremely limited thanks to existing commitments. Sprint is the only carrier in the U.S. presently with sufficient mid-band spectrum to offer 5G services.

High-Band

The majority of the early 5G rollout in the U.S. is happening in the high-band via millimeter-wave (mmWave), which covers radio band frequencies of 30 GHz to 300 GHz. This is where we are presently seeing the amazing speed tests with download speeds topping 1Gbps under the right conditions. The theoretical limits on high-band 5G is closer to 10Gbps. As you might have guessed, the big downside here is the range. Real-world testing of the current implementations of mmWave have shown connections drop after just a few hundred feet and any obstructions — like going inside — will cut that even further.

5G: The Wireless Carriers

All four of the major wireless carriers in the U.S. have rolled out their 5G networks this year, but the extent of those rollouts as well as the technology they use differs. AT&T is out to an early lead, but by year’s end only Sprint will be lagging behind if everyone manages to hit their stated goals.

samsung-phone-5g

AT&T

Currently active in 21 cities, AT&T has been fastest out of the gate with its 5G network and it projects that it will deploy in 30 cities by the end of 2019, however access is still limited to select business customers. This is not to be confused with AT&T’s 5G Evolution (5GE) that started showed up on some AT&T devices at the end of 2018. That’s really just a revision to its 4G LTE network that falls well short of 5G standards. AT&T is exclusively using mmWave currently and will be upgrading those nodes in the next year to boost their performance while also rolling out some low-band 5G to extend coverage.

Sprint

Currently active in nine cities, Sprint is also going to be the slowest rollout this year as it isn’t projecting any additional 5G cities by the end of the year. On the plus side for Sprint, as we mentioned earlier it is the only U.S. carrier with mid-band spectrum (2.5GHz) and thus has considerably more extensive 5G coverage in those cities than the other carriers can boast in their 5G cities. Sprint is also using Massive MIMO (Multiple Input Multiple Output) transceivers and beamforming to further boost its 5G coverage, putting 64 transmitters and 64 receivers on a single array which can then track devices to direct a signal more precisely at them.

T-Mobile

Currently active in six cities, T-Mobile is also targeting 30 total cities for its 5G network by the end of 2019. While they are using mmWave at the moment, T-Mobile will be augmenting this with its low-band 600MHz 5G sometime in the future.

Verizon

Currently active in 13 cities and some NFL stadiums, Verizon is looking to match T-Mobile and AT&T by the end of the year with 30 total cities on its 5G network. Verizon is also exclusively using mmWave at the moment, but like AT&T and T-Mobile they plan to ultimately add 5G on its low-bands to extend the networks reach.

5G: The Hardware

Limited is probably the best way to describe the available 5G hardware today, not surprising given the current state of the networks, but there is plenty on the horizon.

Laptops

Qualcomm showed off its Project Limitless 5G laptop with Lenovo using the Snapdragon 8cx processor and Snapdragon X55 5G modem in May with a planned launch sometime in 2020, but nothing’s available for consumers yet. This is the first Snapdragon chipset designed entirely with PCs in mind and should deliver always-connected and always-on laptops with true all-day battery life and once the 5G networks get up to speed it opens up some interesting new capabilities.

qualcomm

Storage is one problem that is largely solved by 5G, given the speed and low-latency, access to files whether local or in the cloud should be virtually indistinguishable. Similarly collaboration on even large video files for example, becomes possible in real-time. Live-translation during video calls, one of Qualcomm’s own examples, could be achieved using the on-board AI of the Snapdragon 8cx along with 5G. And on a more fun note, online gaming or game streaming services should be flawless on a 5G connection.

In December Qualcomm will be holding its Snapdragon Tech Summit, where they announced the Snapdragon 8cx last year, so we can expect to hear a lot more about what’s coming for 5G laptops.

Smartphones

The Samsung Galaxy S10 5G is the lone 5G smartphone that is available across all four networks. Additional 5G smartphones currently available include the LG V50 ThinQ, the OnePlus 7 Pro 5G, the Samsung Galaxy Note 10 Plus 5G and the Moto Z4/Z3/Z2 Force with a 5G Moto Mod, with availability depending on carrier.

Hotspots

AT&T, Sprint, and Verizon each have a single 5G hotspot available currently. On AT&T it’s the Netgear Nighthawk 5G Mobile Hotspot, which is only presently available to business customers. Sprint has the unique HTC 5G Hub, which features an ethernet port, a 5-inch touchscreen, and Android 9. Finally, Verizon offers the Inseego MiFi M1000, which is a more traditional hotspot again with a 2.4-inch color touchscreen.

5G: The Future

While our first taste of 5G is going to be on smartphones, this isn’t going to be where we see the biggest impact for 5G. While we’ll appreciate faster downloads and more seamless high-definition streaming video, the “killer app” for 5G isn’t here yet.

Driverless vehicles are another potential landing spot for 5G, with cars and traffic signals all able to communicate with virtually no delay it would make for vastly safer travel. And returning to a simpler advancement, 5G should make high-speed home internet available to rural areas that can’t access it at present. While 5G isn’t going to change everything in the next year, it’s easy to get excited about what could be possible with it in the years to come.

Source: https://www.laptopmag.com/articles/what-is-5g
28 09 19

Advertisements

Service exposure: a critical capability in a 5G world

2 Sep

Exposure – and service exposure in particular – will be critical to the creation of the programmable networks that businesses need to communicate efficiently with Internet of Things (IoT) devices, handle edge loads and pursue the myriad of new commercial opportunities in the 5G world.

While service exposure has played a notable role in previous generations of mobile technology – by enabling roaming, for example, and facilitating payment and information services over the SMS channel – its role in 5G will be much more prominent.

The high expectations on mobile networks continue to rise, with never-ending requests for higher bandwidth, lower latency, increased predictability and control of devices to serve a variety of applications and use cases. At the same time, we can see that industries such as health care and manufacturing have started demanding more customized connectivity to meet the needs of their services. While some of these demands can be met through improved network connectivity capabilities, there are other areas where those improvements alone will not be sufficient.

For example, in recent years, content delivery networks (CDNs) have been used in situations where deployments within the operator network became a necessity to address requirements like high bandwidth. More recently, however, new use-case categories in areas such as augmented reality (AR)/virtual reality (VR), automotive and Industry 4.0 have made it clear that computing resources need to be accessible at the edge of the network. This development represents a great opportunity for operators, enterprises and application developers to introduce and capitalize on new services. The opportunity also extends to web-scale providers (Amazon, Google, Microsoft, Alibaba and so on) that have invested in large-scale and distributed cloud infrastructure deployments on a global scale, thereby becoming the mass-market provider of cloud services.

Several web-scale providers have already started providing on-premises solutions (a combination of full-stack solutions and software-only solutions) to meet the requirements of certain use cases. However, the ability to expand the availability of web-scale services toward the edge of the operator infrastructure would make it possible to tackle a multitude of other use cases as well. Such a scenario is mutually beneficial because it allows the web-scale providers to extend the reach of services that benefit from being at the edge of the network (such as the IoT and CDNs), while enabling telecom operators to become part of the value chain of the cloud computing market.

Figure 1: Collaboration with web-scale providers on telecom distributed clouds

Figure 1: Collaboration with web-scale providers on telecom distributed clouds

Figure 1 illustrates how a collaboration with web-scale providers on telecom distributed clouds could be structured. We are currently exploring a partnership to enable system integrators and developers to deploy web-scale player application platforms seamlessly on telecom distributed clouds. Distributed cloud abstraction on the web-scale player marketplace encompasses edge compute, latency and bandwidth guarantee and mobility. Interworking with IoT software development kits (SDKs) and device management provides integration with provisioning certificate handling services and assignment to distributed cloud tenant breakout points.

In the mid to long term, service exposure will be critical to the success of solutions that rely on edge computing, network slicing and distributed cloud. Without it, the growing number of functions, nodes, configurations and individual offerings that those solutions entail represents a significant risk of increased operational expenditure. The key benefit of service exposure in this respect is that it makes it possible to use application programming interfaces (APIs) to connect automation flows and artificial intelligence (AI) processes across organizational, technology, business-to-business (B2B) and other borders, thereby avoiding costly manual handling. AI and analytics-based services are particularly good candidates for exposure and external monetization.

Key enablers

The 5G system architecture specified by 3GPP has been designed to support a wide range of use cases based on key requirements such as high bandwidth/throughput, massive numbers of connected devices and ultra-low latency. For example, enhanced mobile broadband (eMBB) will provide peak data rates above 10Gbps, while massive machine-type communications (mMTC) can support more than 1 million connections per square kilometer. Ultra-reliable low-latency communications (uRLLC) guarantees less than 1ms latency.

Fulfilling these eMBB, mMTC and uRLLC requirements necessitates significant changes to both the RAN and the core network. One of the most significant changes is that the core network functions (NFs) in the 5G Core (5GC) interact with each other using a Service-based Architecture (SBA). It is this change that enables the network programmability, thereby opening up new opportunities for growth and innovation beyond simply accelerating connectivity.

Service-based Architecture

The SBA of the 5GC network makes it possible for 5GC control plane NFs to expose Service-based Interfaces (SBIs) and act as service consumers or producers. The NFs register their services in the network repository function, and services can then be discovered by other NFs. This enables a flexible deployment, where every NF allows the other authorized NFs to access the services, which provides tremendous flexibility to consume and expose services and capabilities provided by 5GC for internal or external third parties. This support of the services subscription makes it completely different to the 4G/5G Evolved Packet Core network.

Because it is service-driven, SBA enables new service types and supports a wide variety of diversified service types associated with different technical requirements. 5G provides the SBI for different NFs (for example via SBI HTTP/2 Restful APIs). The SBI can be used to address the diverse service types and highly demanding performance requirements in an efficient way. It is an enabler for short time to market and cloud-native web-scale technologies.

The 3GPP is now working on conceptualizing 5G use cases toward industry verticals. Many use cases can be created on-demand as a result of the SBA.

Distributed cloud infrastructure

The ability to deploy network slices – an important aspect of 5G – in an automated and on-demand manner requires a distributed cloud infrastructure. Further, the ability to run workloads at the edge of the network requires the distributed cloud infrastructure to be available at the edge. What this essentially means is that distributed cloud deployments within the operator network will be an inherent part of the introduction of 5G. The scale, growth rate, distribution and network depth (how far out in the network edge) of those deployments will vary depending on the telco network in question and the first use cases to be introduced.

As cloud becomes a natural asset of the operator infrastructure with which to host NFs and services (such as network slicing), the ability to allow third parties to access computing resources in this same infrastructure is an obvious next step. Contrary to the traditional cloud deployments of the web-scale players, however, computing resources within the operator network will be scarcer and much more geographically distributed. As a result, resources will need to be used much more efficiently, and mechanisms will be needed to hide the complexity of the geographical distribution of resources.

Cloud-native principles

The adoption of cloud-native implementation principles is necessary to achieve the automation, optimized resource utilization and fast, low-cost introduction of new services that are the key features of a dynamic and constrained ecosystem. Cloud-native implementation principles dictate that software must be broken down into smaller, more manageable pieces as loosely coupled stateless services and stateful backing services. This is usually achieved by using a microservice architecture, where each piece can be individually deployed, scaled and upgraded. In addition, microservices communicate through well-defined and version-controlled network-based interfaces, which simplifies integration with exposure.

Three types of service exposure

There are three main types of service exposure in a telecom environment:

  • network monitoring
  • network control and configuration
  • payload interfaces.

Examples of network monitoring service exposure include network publishing information as real-time statuses, event streams, reports, statistics, analytic insights and so on. This also includes read requests to the network.

Service exposure for network control and configuration involves requesting control services that directly interact with the network traffic or request configuration changes. Configuration can also include the upload of complete virtual network functions (VNFs) and applications.

Examples of service-exposure-enabled payload interfaces include messaging and local breakout, but it should be noted that many connectivity/payload interfaces bypass service exposure for legacy reasons. Even though IP connectivity to devices is a service that is exposed to the consumer, for example, it is currently not achieved via service exposure. The main benefit of adding service exposure would be to make it possible to interact with the data streams through local breakout for optimization functions.

Leveraging software development kits

At Ericsson, we are positioning service exposure capabilities in relation to developer workflows and practices. Developers are the ones who use APIs to create solutions, and we know they rely heavily on SDKs. There are currently advanced developer frameworks for all sorts of advanced applications including drones, AR/VR, the IoT, robotics and gaming. Beyond the intrinsic value in exposing native APIs, an SDK approach also creates additional value in terms of enabling the use of software libraries, integrated development environments (IDEs) plug-ins, third-party provider (3PP) cloud platform extensions and 3PP runtimes on edge sites, as well as cloud marketplaces to expose these capabilities.

Software libraries can be created by prepackaging higher-level services such as low-latency video streaming and reverse charging. This can be achieved, for example, by using the capabilities of network exposure functions (NEF) and service capability exposure functions (SCEF), creating ready-to-deploy functions or containers that can be distributed through open repositories, or even marketplaces, in some cases. This possibility is highly relevant for edge computing frameworks.

Support for IDE plug-ins eases the introduction of 3PP services with just a few additional clicks. Selected capabilities within 3PP cloud platform extensions can also create value by extending IoT device life-cycle management (LCM) for cellular connected devices, for example. The automated provisioning of popular 3PP edge runtimes on telco infrastructure enables 3PP runtimes on edge sites.

Finally, cloud marketplaces are an ideal place to expose all of these capabilities. The developer subscribes to certain services through their existing account, gaining the ability to activate a variety of libraries, functions and containers, along with access to plug-ins they can work with and/or the automated provisioning required for execution.

Functional architecture for service exposure

The functional architecture for service exposure is built around four customer scenarios:

  • internal consumers
  • business-to-consumers (B2C)
  • business-to-business (B2B)
  • business-to-business-to-business/consumers (B2B2X).

In the case of internal consumers, applications for monitoring, optimization and internal information sharing operate under the control and ownership of the enterprise itself. In the case of B2C, consumers directly use services via web or app support. B2C examples include call control and self-service management of preferences and subscriptions. The B2B scenario consists of partners that use services such as messaging and IoT communication to support their business. The B2B2X scenario is made up of more complex value chains such as mobile virtual network operators, web scale, gaming, automotive and telco cloud through web-scale APIs.

Figure 2: Functional architecture for service exposure

Figure 2: Functional architecture for service exposure

Figure 2 illustrates the functional architecture for service exposure. It is divided into three layers that each act as a framework for the realization. Domain-specific functionality and knowledge are applied and added to the framework as configurations, scripts, plug-ins, models and so on. For example, the access control framework delivers the building blocks for specializing the access controls for a specific area.

The abstraction and resource layer is responsible for communicating with the assets. If some assets are located outside the enterprise – at a supplier or partner facility in a federation scenario, for example – B2B functionality will also be included in this layer.

The business and service logic layer is responsible for transformation and composition – that is, when there is a need to raise the abstraction level of a service to create combined services.

The exposed service execution APIs and exposed management layer are responsible for making the service discoverable and reachable for the consumer. This is done through the API gateway, with the support of portal, SDK and API management.

Business support systems (BSS) and operations support systems (OSS) play a double role in this architecture. Firstly, they serve as resources that can expose their values – OSS can provide analytics insights, for example, and BSS can provide “charging on behalf of” functionality. At the same time, OSS are responsible for managing service exposure in all assurance, configuration, accounting, performance, security and LCM aspects, such as the discovery, ordering and charging of a service.

One of the key characteristics of the architecture presented in Figure 2 is that the service exposure framework life cycle is decoupled from the exposed services, which makes it possible to support both short- and long-tail exposed services. This is realized through the inclusion and exposure of new services through configuration, plug-ins and the possibility to extend the framework.

Another key characteristic to note is that it is possible to deploy common exposure functions both in a distributed way and individually – in combination with other microservices for efficiency reasons, for example. Typical cases are distributed cloud with edge computing and web-scale scenarios such as download/upload/streaming where the edge site and terminal are involved in the optimization.

The exposure framework is realized as a set of loosely connected components, all of which are cloud-native compliant and microservice based, running in containers. There is not a one-size-fits-all deployment – some of the components are available in several variants to fit different scenarios. For example, components in the API gateway support B2B scenarios with full charging but there are also scaled-down versions that only support reporting, intended for deployment in internal exposure scenarios.

Other key properties of the service exposure framework are:

  • scalability (configurable latency and scalable throughput) to support different deployments
  • diversified API types for payload/connectivity, including messaging APIs (request-response and/or subscribe-notify type), synchronous, asynchronous, streaming, batch, upload/download and so on
  • multiple interface bindings such as restful, streaming and legacy
  • multivendor and partner support (supplier/federation/aggregator/web-scale value chains)
  • security and access control functionality.

Deployment examples

Service exposure can be deployed in a multitude of locations, each with a different set of requirements that drive modularity and configurability needs. Figure 3 illustrates a few examples.

Figure 3: Service exposure deployment (dark pink boxes indicate deployed components)

Figure 3: Service exposure deployment (dark pink boxes indicate deployed components)

In the case of Operator B in Figure 3, service exposure is deployed to expose services in a full B2B context. BSS integration and support is required to handle all commercial aspects of the exposure and LCM of customers, contracts, orders, services and so on, along with charging and billing. Operator B also uses the deployed B2B commercial support to acquire services from a supplier.

In the case of Operator A, service exposure is deployed both at the central site and at the edge site to meet latency or payload requirements. Services are only exposed to Operator A’s own applications/VNFs, which limits the need for B2B support. However, due to the fact that Operator A hosts some applications for an external partner, both centrally and at the edge, full B2B support must be deployed for the externally owned apps.

The aggregator in Figure 3 deploys the service exposure required to create services put together by more than one supplier. Unified Delivery Network and web-scale integration both fall into this category. As exposure to the consumer is done through the aggregator, this also serves as a B2B interface to handle specific requirements. Examples of this include the advertising and discovery of services via the portals of web-scale providers.

A subset of B2B support is also deployed to provide the service exposure that handles the federation relationship between Operator A and Operator B, in which both parties are on the same level in the ecosystem value chain.

Conclusion

There are several compelling reasons for telecom operators to extend and modernize their service exposure solutions as part of the rollout of 5G. One of the key ones is the desire to meet the rapidly developing requirements of use cases in areas such as the Internet of Things, AR/VR, Industry 4.0 and the automotive sector, which will depend on operators’ ability to provide computing resources across the whole telco domain, all the way to the edge of the mobile network. Service exposure is a key component of the solution to enable these use cases.

Recent advances in the service exposure area have resulted from the architectural changes introduced in the move toward 5G and the adoption of cloud-native principles, as well as the combination of Service-based Architecture, microservices and container technologies. As operators begin to use 5G technology to automate their networks and support systems, service exposure provides them with the additional benefit of being able to use automation in combination with AI to attract partners that are exploring new, 5G-enabled business models. Web-scale providers are also showing interest in understanding how they can offer their customers an easy extension toward the network edge.

Modernized service exposure solutions are designed to enable the communication and control of devices, providing access to processes, data, networks and OSS/BSS assets in a secure, predictable and reliable manner. They can do this both internally within an operator organization and externally to a third party, according to the terms of a Service Level Agreement and/or a model for financial settlement.

Service exposure is an exciting and rapidly evolving area and Ericsson is playing an active role in its ongoing development. As a complement to our standardization efforts within the 3GPP and Industry 4.0 forums, we are also engaged in open-source communities such as ONAP (the Open Network Automation Platform). This work is important because we know that modernized service exposure solutions will be at heart of efficient, innovative and successful operator networks.

Source: https://www.ericsson.com/en/ericsson-technology-review/archive/2019/service-exposure-a-critical-capability-in-a-5g-world

5G Network Slicing – Moving towards RAN

28 Aug

The CU-UP is a perfect fit for the Radio Network Sub Slice

Network Slicing is a 5G-enabled technology that allows the creation of an E2E Network instance across the Mobile Network Domains (Access, Transport, & Core). Each slice is ideally identified with specific network capabilities and characteristics.

The technique of provisioning a Dedicated E2E Network Instance to End users, Enterprises, & MVNOs is called “Slicing” where one Network can have multiple slices with different Characteristics serving different use cases.

The technology is enabled via an SDN/NFV Orchestration framework that provides Full Lifecycle management for the Slices enabling the dynamic slicing (on-demand instantiation & termination for Slices) with full-Service Assurance Capabilities.

The Concept is not relatively new where the Mobile Broadband Network has always succeeded to provide services to end-users via partitioning the network through Bearers & APNs. Below is how the evolution looks like transiting from one Network serving all services to Dedicated Core Network Instances serving more targeted segments.

 

With the introduction of 5G, the 4G Dedicated Core logic evolved to be 5G Network Slicing with a standard framework that advocates 4 standard slices to be used for global Interoperability (eMBB, uRLLC, MIoT, & V2X)and allowing more space for dynamic slices addressing different Marketing Segments. These slices are globally identified by Slice/Service Type (SST) which maps to the expected network behavior in terms of services and characteristics.

 

New terms and concepts are introduced with Network Slicing such as

  • Network Slice Instance (NSI) – 3GPP Definition – A set of Network Function instances and the required resources (e.g. compute, storage and networking resources) which form a deployed Network Slice.
  • Network Slice Subnet Instance (NSSI) – 3GPP Definition – A representation of the management aspects of a set of Managed Functions and the required resources (e.g. compute, storage and networking resources).

If the above definitions are not clear, then the below diagram might clarify it a little bit. It is all about the customer-facing service (Network Slice as a Service) and how it is being fulfilled.

I’d say that the Core NSSI is the most popular one with a clear framework defined by 3GPP where the slicing logic is nicely explained in many contexts. However, the slicing on the RAN side seems to be vague in terms of technical realization and the use case. So, what’s happening on the radio?!

The NG-RAN, represented by gNB consists of two main functional blocks (DU, Distributed Unit) & (CU, Centralized Unit) as a result of the 5G NR stack split where the CU is further split to CU-CP & CU-UP.

Basically, a gNB may consist of a gNB-CU-CP, multiple gNB-CU-UPs & multiple gNB-DUs with the below regulations

  • One gNB-DU is connected to only one gNB-CU-CP.
  • One gNB-CU-UP is connected to only one gNB-CU-CP;
  • One gNB-DU can be connected to multiple gNB-CU-UPs under the control of the same gNB-CU-CP.

The Location of CU can vary according to the CSP strategy for Edge and according to the services being offered. There can be possible deployments in Cell Sites, Edge DCs, & Aggregation PoPs.

The CU-UP is a perfect fit for the Radio Network Sub Slice.

But Is there a framework to select the CU-UP based on Network Slice Assistance Info?!

Ideally, The CU-CP must get assistance information to decide which CU-UP will serve the particular PDU. Let’s explore that in the 5G (UE Initial Access) Call flow below

 

At one step, in RRCSetupComplete message, the UE declares the requested Network Slice by having the NSSAI (Network Slice Selection Assistance Information) that maps to SST (Slice/Service Type). However, this info is not used to select CU-UP but can be used by CU-CP to select the Serving AMF.

The mapping between PDU Session(s) and S-NSSAI is sent from AMF to gNB-CU-CP in Initial Context Setup Request message. This looks like the perfect input to build logic for Selecting the gNB-CU-UP but looking to the standards, one may realize that the mechanism for selecting the gNB-CU-UP is not yet clear and missing in 3GPP.

Although it is mentioned in many contexts in 3GPP Specifications that the CU-CP selects the appropriate CU-UP(s) for the requested services of the UE, the full picture for the E1 Interface is not yet clear especially for such detailed selection process

This will definitely impact the early plans to adopt a standard RAN Slicing Framework.

The conclusion from my side and after spending some time assessing the Network Slicing at the RAN Side is summarized in the below points.

It is very early at this stage to talk about a standard framework for 5G RAN Slicing.

The first wave for Network slicing will be mainly around slicing in the core domain.

RAN Slicing is a part of an E2E Service (NSaaS) that is dynamic by nature. An Orchestration Framework is a must.

5G Network slicing is one of the most trending 5G use cases. Many operators are looking forward to exploring the technology and building a monetization framework around it. It is very important to set the stage for such technology by investing in enablers such as SDN/NFV, automation, & orchestration. It is also vital to do the necessary reorganization, building the right organizational processes that allow exposing and monetizing such service in an agile and efficient manner.

Source: https://www.netmanias.com/ko/post/blog/14456/5g-iot-sdn-nfv/the-cu-up-is-a-perfect-fit-for-the-radio-network-sub-slice

Is Mobile Network Future Already Written?

25 Aug

5G, the new generation of mobile communication systems with its well-known ITU 2020 triangle of new capabilities, which not only include ultra-high speeds but also ultra-low latency, ultra-high reliability, and massive connectivity promise to expand the applications of mobile communications to entirely new and previously unimagined “vertical industries” and markets such as self-driving cars, smart cities, industry 4.0, remote robotic surgery, smart agriculture, and smart energy grids. The mobile communications system is already one of the most complex engineering systems in the history of mankind. As 5G network penetrates deeper and deeper into the fabrics of the 21st century society, we can also expect an exponential increase in the level of complexity in design, deployment, and management of future mobile communication networks which, if not addressed properly, have the potential of making 5G the victim of its own early successes.

Breakthroughs in Artificial Intelligence (AI) and Machine Learning (ML), including deep neural networks and probability models, are creating paths for computing technology to perform tasks that once seemed out of reach. Taken for granted today, speech recognition and instant translation once appeared intractable, and the board game ‘Go’ had long been regarded as a case testing the limits of AI. With the recent win of Google’s ‘AlphaGo’ machine over world champion Lee Sedol — a solution considered by some experts to be at least a decade further away — was achieved using a ML-based process trained both from human and computer play. Self-driving cars are another example of a domain long considered unrealistic even just a few years ago — and now this technology is among the most active in terms of industry investment and expected success. Each of these advances is a demonstration of the coming wave of as-yet-unrealized capabilities. AI, therefore, offers many new opportunities to meet the enormous new challenges of design, deployment, and management of future mobile communication networks in the era of 5G and beyond, as we illustrate below using a number of current and emerging scenarios.

Network Function Virtualization Design with AI

Network Function Virtualization (NFV) [1] has recently attracted telecom operators to migrate network functionalities from expensive bespoke hardware systems to virtualized IT infrastructures where they are deployed as software components. A fundamental architectural aspect of the 5G network is the ability to create separate end-to-end slices to support 5G’s heterogeneous use cases. These slices are customised virtual network instances enabled by NFV. As the use cases become well-defined, the slices need to evolve to match the changing users’ requirements, ideally in real time. Therefore, the platform needs not only to adapt based on feedback from vertical applications, but also do so in an intelligent and non-disruptive manner. To address this complex problem, we have recently proposed the 5G NFV “microservices” concept, which decomposes a large application into its sub-components (i.e., microservices) and deploys them in a 5G network. This facilitates a more flexible, lightweight system, as smaller components are easier to process. Many cloud-computing companies, such as Netflix and Amazon, are deploying their applications using the microservice approach benefitting from its scalability, ease of upgrade, simplified development, simplified testing, less vulnerability to security attacks, and fault tolerance [6]. Expecting the potential significant benefits of such an approach in future mobile networks, we are developing machine-learning-aided intelligent and optimal implementation of the microservices and DevOps concepts for software-defined 5G networks. Our machine learning engine collects and analyse a large volume of real data to predict Quality of Service (QoS) and security effects, and take decisions on intelligently composing/decomposing services, following an observe-analyse-learn- and act cognitive cycle.

We define a three-layer architecture, as depicted in Figure 1, composing of service layer, orchestration layer, and infrastructure layer. The service layer will be responsible for turning user’s requirements into a service function chain (SFC) graph and giving the SFC graph output to the orchestration layer to deploy it into the infrastructure layer. In addition to the orchestration layer, components specified by NFV MANO [1], the orchestration layer will have the machine learning prediction engine which will be responsible for analysing network conditions/data and decompose the SFC graph or network functions into a microservice graph depending on future predictions. The microservice graph is then deployed into the infrastructure layer using the orchestration framework proposed by NFV-MANO.

Figure 1: Machine learning based network function decomposition and composition architecture.

Figure 1: Machine learning based network function decomposition and composition architecture.

Physical Layer Design Beyond-5G with Deep-Neural Networks

Deep learning (DL) based auto encoder (AE) has been proposed recently as a promising, and potentially disruptive Physical Layer (PHY) design for beyond-5G communication systems. DL based approaches offer a fundamentally new and holistic approach to the physical layer design problem and hold the promise for performance enhancement in complex environments that are difficult to characterize with tractable mathematical models, e.g., for the communication channel [2]. Compared to a traditional communication system, as shown in Figure 2 (top) with a multiple-block structure, the DL based AE, as shown in Figure 2 (bottom), provides a new PHY paradigm with a pure data-driven and end-to-end learning based solution which enables the physical layer to redesign itself through the learning process in order to optimally perform in different scenarios and environment. As an example, time evolution of the constellations of two auto encoder transmit-receiver pairs are shown in Figure 3 which starting from an identical set of constellations use DL-based learning to achieve optimal constellations in the presence of mutual interference [3].

Figure 2: A conventional transceiver chain consisting of multiple signal processing blocks (top) is replaced by a DL-based auto encoder (bottom).

Figure 2: A conventional transceiver chain consisting of multiple signal processing blocks (top) is replaced by a DL-based auto encoder (bottom).
Figure 3: Visualization of DL-based adaption of constellations in the interface scenario of two auto encoder transmit-receiver pairs (Gif animation included in online version. Animation produced by Lloyd Pellatt, University of Sussex).
Figure 3: Visualization of DL-based adaption of constellations in the interface scenario of two auto encoder transmit-receiver pairs (Gif animation included in online version. Animation produced by Lloyd Pellatt, University of Sussex).

Spectrum Sharing with AI

The concept of cognitive radio was originally introduced in the visionary work of Joseph Mitola as the marriage between wireless communications and artificial intelligence, i.e., wireless devices that can change their operations in response to the environment and changing user requirements, following a cognitive cycle of observe/sense, learn and act/adapt.  Cognitive radio has found its most prominent application in the field of intelligent spectrum sharing. Therefore, it is befitting to highlight the critical role that AI can play in enabling a much more efficient sharing of radio spectrum in the era of 5G. 5G New Radio (NR) is expected to support diverse spectrum bands, including the conventional sub-6 GHz band, the new licensed millimetre wave (mm-wave)  bands which are being allocated for 5G, as well as unlicensed spectrum. Very recently 3rd Generation Partnership Project (3GPP) Release-16 has introduced a new spectrum sharing paradigm for 5G in unlicensed spectrum. Finally, both in the UK and Japan the new paradigm of local 5G networks are being introduced which can be expected to rely heavily on spectrum sharing. As an example of such new challenges, the scenario of 60 GHz unlicensed spectrum sharing is shown in Figure 4(a), which depicts a beam-collision interference scenario in this band. In this scenario, multiple 5G NR BSs belonging to different operators and different access technologies use mm-wave communications to provide Gbps connectivity to the users. Due to high density of BS and the number of beams used per BS, beam-collision can occur where unintended beam from a “hostile” BS can cause server interference to a user. Coordination of beam-scheduling between adjacent BSs to avoid such interference scenario is not possible when considering the use of the unlicensed band as different  BS operating in this band may belong to different operators or even use different access technologies, e.g., 5G NR versus, e.g., WiGig or Multifire. To solve this challenge, reinforcement learning algorithms can successfully be employed to achieve self-organized beam-management and beam-coordination without the need for any centralized coordination or explicit signalling [4].  As 4(b) demonstrates (for the scenario with 10 BSs and cell size of 200 m) reinforcement learning-based self-organized beam scheduling (algorithms 2 and 3 in the Figure 4(b)) can achieve system spectral efficiencies that are much higher than the baseline random selection (algorithm 1) and are very close to the theoretical limits obtained from an exhaustive search (algorithm 4), which besides not being scalable would require centralised coordination.

Figure 4: Spectrum sharing scenario in unlicensed mm-wave spectrum (left) and system spectral efficiency of 10 BS deployment (right). Results are shown for random scheduling (algorithm 1), two versions of ML-based schemes (algorithms 2 and 3) and theoretical limit obtained from exhaustive search in beam configuration space (algorithm 4).

Figure 4: Spectrum sharing scenario in unlicensed mm-wave spectrum (left) and system spectral efficiency of 10 BS deployment (right).  Results are shown for random scheduling (algorithm 1), two versions of ML-based schemes (algorithms 2 and 3) and theoretical limit obtained from exhaustive search in beam configuration space (algorithm 4).

Conclusions

In this article, we presented few case studies to demonstrate the use of AI as a powerful new approach to adaptive design and operations of 5G and beyond-5G mobile networks. With mobile industry heavily investing in AI technologies and new standard activities and initiatives, including ETSI Experiential Networked Intelligence ISG [5], the ITU Focus Group on Machine Learning for Future Networks Including 5G (FG-ML5G) and the IEEE Communication Society’s Machine Learning for Communications ETI are already actively working on harnessing the power of AI and ML for future telecommunication networks, it is clear that these technologies will play a key role in the evolutionary path of 5G toward much more efficient, adaptive, and automated mobile communication networks. However, with its phenomenally fast pace of development, deep penetration of Artificial Intelligence and machine-learning may eventually disrupt the entire mobile networks as we know it, hence ushering the era of 6G.

Source: https://www.comsoc.org/publications/ctn/mobile-network-future-already-written

Channel Coding NR

25 Aug

In 5G NR two type of coding chosen by 3GPP.

  • LDPC : Low density parity check
  • Polar code 

Why LDPC and Polar code chosen for 5G Network

Although many coding schemes with capacity achieving performance at large block lengths are available, many of those do not show consistent good performance in a wide range of block lengths and code rates as the eMBB scenario demands. But turbo, LDPC and polar codes show promising BLER performance in a wide range of coding rates and code lengths; hence, are being considered for 5G physical layer. Due to the low error probability performance within a 1dB fraction from the the Shannon limit, turbo codes are being used in a variety of applications, such as deep space communications, 3G/4G mobile communication in Universal Mobile  Telecommunications System (UMTS) and LTE standards and Digital Video Broadcasting (DVB). Although it is being used in 3G and 4G, it may not satisfy the performance requirements of eMBB for all the code rates and block lengths as the implementation complexity is too high for higher data rates.

Invention of LDPC

LDPC codes were originally invented and published in 1962.

(5G) new radio (NR) holds promise in fulfilling new communication requirements that enable ubiquitous, low-latency, high-speed, and high-reliability connections among mobile devices. Compared to fourth-generation (4G) long-term evolution (LTE), new error-correcting codes have been introduced in 5G NR for both data and control channels. In this article, the specific low-density parity-check (LDPC) codes and polar codes adopted by the 5G NR standard are described.

Turbo codes, prevalent in most modern cellular devices, are set to be replaced by LDPC codes as the code for forward error correction, NR is a pair of new error-correcting channel codes adopted, respectively, for data channels and control channels. Specifically, LDPC codes replaced turbo codes for data channels, and polar codes replaced tail-biting convolution codes (TBCCs) for control channels.This transition was ushered in mainly because of the high throughput demands for 5G New Radio (NR). The new channel coding solution also needs to support incremental-redundancy hybrid ARQ, and a wide range of block lengths and coding rates, with stringent performance guarantees and minimal description complexity. The purpose of each key component in these codes and the associated operations are explained. The performance and implementation advantages of these new codes are compared with those of 4G LTE.

Why LDPC ?

  • Compared to turbo code decoders, the computations for LDPC codes decompose into a larger number of smaller independent atomic units; hence, greater parallelism can be more effectively achieved in hardware.
  • LDPC codes have already been adopted into other wireless standards including IEEE 802.11, digital video broadcast (DVB), and Advanced Television System Committee (ATSC).
  • The broad requirements of 5G NR demand some innovation in the LDPC design. The need to support IR-hybrid automatic repeat request (HARQ) as well as a wide range of block sizes and code rates demands an adjustable design.
  • LDPC codes can offer higher coding gains than turbo codes and have lower error floors.
  • LDPC codes can simultaneously be computationally more efficient than turbo codes, that is, require fewer operations to achieve the same target block error rate (BLER) at a given energy per symbol (signal-to noise ratio, SNR)
  • Consequently, the throughput of the LDPC decoder increases as the code rate increases.
  • LDPC code shows inferior performance for short block lengths (< 400 bits) and at low code rates (< 1/3) [ which is typical scenario for URLLC and mMTC use cases. In case of TBCC codes, no further improvements have been observed towards 5G new use cases.

 

 The main advantages of 5G NR LDPC codes compared  to turbo codes used in 4G LTE 

 

  •         1.Better area throughput efficiency (e.g., measured in Gb/s/mm2) and substantially                 higher achievable peak throughput.
  •         2. reduced decoding complexity and improved decoding latency (especially when                     operating at high code rates) due to higher degree of parallelization.
  •        3. improved performance, with error floors around or below the block error rate                       (BLER) 10¯5 for all code sizes and code rates.

These advantages make NR LDPC codes suitable for the very high throughputs and ultra-reliable low-latencycommunication targeted with 5G, where the targeted peak data rate is 20 Gb/s for downlink and 10 Gb/s for uplink.

 

Structure of LDPC

 

Structure of NR LDPC Codes

 

The NR LDPC coding chain contain

  • code block segmentation,
  • cyclic-redundancy-check (CRC)
  • LDPC encoding
  • Rate matching
  • systematic-bit-priority interleaving

code block segmentation allows very large transport blocks to be split into multiple smaller-sized code blocks that can be efficiently processed by the LDPC encoder/decoder. The CRC bits are then attached for error detection purposes. Combined with the built-in error detection of the LDPC codes through the parity-check (PC) equations, very low probability of undetected errors can be achieved. The rectangular interleaver with number of rows equal to the quadrature amplitude modulation (QAM) order improves performance by making systematic bits more reliable than parity bits for the initial transmission of the code blocks.

NR LDPC codes use a quasi-cyclic structure, where the parity-check matrix (PCM) is defined by a smaller base matrix.Each entry of the base matrix represents either a Z # Z zero matrix or a shifted Z # Z identity matrix, where a cyclic shift (given by a shift coefficient) to the right of each row is applied.

The LDPC codes chosen for the data channel in 5G NR are quasi-cyclic and have a rate-compatible structure that facilitates their use in hybrid automatic-repetition-request (HARQ) protocols

General structure of the base matrix used in the quasi-cyclic LDPC codes selected for the data channel in NR.

To cover the large range of information payloads and rates that need to be supported in 5G NR,
two different base matrices are specified.

Each white square represents a zero in the base matrix and each nonwhite square represents a one.

The first two columns in gray correspond to punctured systematic bits that are actually not transmitted.

The blue (dark gray in print version) part constitutes the kernel of the base matrix, and it defines a high-rate code.

The dual-diagonal structure of the parity subsection of the kernel enables efficient encoding. Transmission at lower code rates is achieved by adding additional parity bits,

The base matrix #1, which is optimized for high rates and long block lengths, supports LDPC codes of a nominal rate between 1/3 and 8/9. This matrix is of dimension 46 × 68 and has 22 systematic columns. Together with a lift factor of 384, this yields a maximum information payload of k = 8448 bits (including CRC).

The base matrix #2 is optimized for shorter block lengths and smaller rates. It enables transmissions at a nominal rate between 1/5 and 2/3, it is of dimension 42 × 52, and it has 10 systematic columns.
This implies that the maximum information payload is k = 3840.

 

Polar Code 

Polar codes, introduced by Erdal Arikan in 2009 , are the first class of linear block codes that provably achieve the capacity of memoryless symmetric  (Shannon) capacity of a binary input discrete memoryless channel using a low-complexity decoder, particularly, a successive cancellation (SC) decoder. The main idea of polar coding  is to transform a pair of identical binary-input channels into two distinct channels of different qualities: one better and one worse than the original binary-input channel.

Polar code is a class of linear block codes based on the concept of Channel polarization. Explicit code construction and simple decoding schemes with modest complexity and memory requirements renders polar code appealing for many 5G NR applications.

Polar codes with effortless methods of puncturing (variable code rate) and code shortening (variable code length) can achieve high throughput and BER performance better.

At first, in October 2016 a Chinese firm Huawei used Polar codes as channel coding method in 5G field trials and achieved downlink speed of 27Gbps.

In November 2016, 3GPP standardized polar code as dominant coding for control channel functions in 5G eMBB scenario in RAN 86 and 87 meetings.

Turbo code is no more in the race due to presence of error floor which make it unsuitable for reliable communication.High complexity iterative decoding algorithms result in low throughput and high latency. Also, the poor performance at low code rates for shorter block lengths make turbo code unfit for 5G NR.

Polar Code is considered as promising contender for the 5G URLLC and mMTC use cases,It offers excellent performance with variety in code rates and code lengths through simple puncturing and code shortening mechanisms respectively

Polar codes can support 99.999% reliability which is mandatory for  the ultra-high reliability requirements of 5G applications.

Use of simple encoding and low complexity SC-based decoding algorithms, lowers terminal power consumption in polar codes (20 times lower than turbo code for same complexity).

Polar code has lower SNR requirements than the other codes for equivalent error rate and hence, provides higher coding gain and increased spectral efficiency.

Framework of Polar Code in 5G Trial System

The following figure is shown for the framework of encoding and decoding using Polar code. At the transmitter, it will use Polar code as channel coding scheme. Same as in Turbo coding module, function blocks such as segmentation of Transmission Block (TB) into multiple Code Blocks (CBs), rate matching (RM) etc. are also introduced when using Polar code at the transmitter. At the receiver side, correspondingly, de-RM is firstly implemented, followed by decoding CB blocks and concatenating CB blocks into one TB block. Different from Turbo decoding, Polar decoding uses a specific decoding scheme, SCL to decode each CB block. For the encoding and decoding framework of Turbo.

  NR polar coding chain

 

Source: https://cafetele.com/channel-coding-in-5g-new-radio/

An overview of the 3GPP 5G security standard

21 Aug

Building the inherently secure 5G system required a holistic effort, rather than focusing on individual parts in isolation. This is why several organizations such as the 3GPP, ETSI, and IETF have worked together to jointly develop the 5G system, each focusing on specific parts. Below, we present the main enhancements in the 3GPP 5G security standard.

Crowd crossing street

These enhancements come in terms of a flexible authentication framework in 5G, allowing the use of different types of credentials besides the SIM cards; enhanced subscriber privacy features putting an end to the IMSI catcher threat; additional higher protocol layer security mechanisms to protect the new service-based interfaces; and integrity protection of user data over the air interface.

Overview: Security architecture in 5G and LTE/4G systems

As shown in the figure below, there are many similarities between LTE/4G and 5G in terms of the network nodes (called functions in 5G) involved in the security features, the communication links to protect, etc. In both systems, the security mechanisms can be grouped into two sets.

  • The first set contains all the so-called network access security mechanisms. These are the security features that provide users with secure access to services through the device (typically a phone) and protect against attacks on the air interface between the device and the radio node (eNB in LTE and gNB in 5G)
  • The second set contains the so-called network domain security mechanisms. This includes the features that enable nodes to securely exchange signaling data and user data for example between radio nodes and core network nodes
Figure 1_Simplified security architectures of LTE and 5G

Figure 1: Simplified security architectures of LTE and 5G showing the grouping of network entities that needs to be secured in the Home Network and Visited Network and all the communication links that must be protected.

New authentication framework

A central security procedure in all generations of 3GPP networks is the access authentication, known as primary authentication in 3GPP 5G security standards. This procedure is typically performed during initial registration (known as initial attach in previous generations), for example when a device is turned on for the first time.

A successful run of the authentication procedure leads to the establishment of sessions keys, which are used to protect the communication between the device and the network. The authentication procedure in 3GPP 5G security has been designed as a framework to support the extensible authentication protocol (EAP) – a security protocol specified by the Internet Engineering Task Force (IETF) organization. This protocol is well established and widely used in IT environments.

The advantage of this protocol is that it allows the use of different types of credentials besides the ones commonly used in mobile networks and typically stored in the SIM card, such as certificates, pre-shared keys, and username/password. This authentication method flexibility is a key enabler of 5G for both factory use-cases and other applications outside the telecom industry.

The support of EAP does not stop at the primary authentication procedure, but also applies to another procedure called secondary authentication. This is executed for authorization purposes during the set-up of user plane connections, for example to surf the web or to establish a call. It allows the operator to delegate the authorization to a third party. The typical use case is the so-called sponsored connection, for example towards your favorite streaming or social network site and where other existing credentials (e.g. username/password) can be used to authenticate the user and authorize the connection. The use of EAP allows to cater to the wide variety of credentials types and authentication methods deployed and used by common application and service providers.

Enhanced subscriber privacy

Security in the 3GPP 5G standard significantly enhances protection of subscriber privacy against false base stations, popularly known as IMSI catchers or Stingrays. In summary, it has been made very impractical for false base stations to identify and trace subscribers by using conventional attacks like passive eavesdropping or active probing of permanent and temporary identifiers (SUPI and GUTI in 5G). This is detailed in our earlier blog post about 5G cellular paging security, as well as our earlier post published in June 2017.

In addition, 5G is proactively designed to make it harder for attackers to correlate protocol messages and identify a single subscriber. The design is such that only a limited set of information is sent as cleartext even in initial protocol messages, while the rest is always concealed. Another development is a general framework for detecting false base stations, a major cause for privacy concerns. The detection, which is based on the radio condition information reported by devices on the field, makes it considerably more difficult for false base stations to remain stealthy.

Service based architecture and interconnect security

5G has brought about a paradigm shift in the architecture of mobile networks, from the classical model with point-to-point interfaces between network function to service-based interfaces (SBI). In a service-based architecture (SBA), the different functionalities of a network entity are refactored into services exposed and offered on-demand to other network entities.

The use of SBA has also pushed for protection at higher protocol layers (i.e. transport and application), in addition to protection of the communication between core network entities at the internet protocol (IP) layer (typically by IPsec). Therefore, the 5G core network functions support state-of-the-art security protocols like TLS 1.2 and 1.3 to protect the communication at the transport layer and the OAuth 2.0 framework at the application layer to ensure that only authorized network functions are granted access to a service offered by another function.

The improvement provided by 3GPP SA3 to the interconnect security (i.e. security between different operator networks) consists of three building blocks:

  • Firstly, a new network function called security edge protection proxy (SEPP) was introduced in the 5G architecture (as shown in figure 2). All signaling traffic across operator networks is expected to transit through these security proxies
  • Secondly, authentication between SEPPs is required. This enables effective filtering of traffic coming from the interconnect
  • Thirdly, a new application layer security solution on the N32 interface between the SEPPs was designed to provide protection of sensitive data attributes while still allowing mediation services throughout the interconnect

The main components of SBA security are authentication and transport protection between network functions using TLS, authorization framework using OAuth2, and improved interconnect security using a new security protocol designed by 3GPP.

Figure 2: Simplified service-based architecture for the 5G system in the roaming case

Figure 2: Simplified service-based architecture for the 5G system in the roaming case

Integrity protection of the user plane

In 5G, integrity protection of the user plane (UP) between the device and the gNB, was introduced as a new feature. Like the encryption feature, the support of the integrity protection feature is mandatory on both the devices and the gNB while the use is optional and under the control of the operator.

It is well understood that integrity protection is resource demanding and that not all devices will be able to support it at the full data rate. Therefore, the 5G System allows the negotiation of which rates are suitable for the feature. For example, if the device indicates 64 kbps as its maximum data rate for integrity protected traffic, then the network only turns on integrity protection for UP connections where the data rates are not expected to exceed the 64-kbps limit.

Learn more about security standardization

The security aspects are under the remits of one of the different working groups of 3GPP called SA3. For the 5G system, the security mechanisms are specified by SA3 in TS 33.501. Ericsson has been a key contributor to the specification work and has driven several security enhancements such as flexible authentication, subscriber privacy and integrity protection of user data.

Learn more about our work across network standardization.

Explore the latest trending security content on our telecom security page.

Source: https://www.ericsson.com/en/blog/2019/7/3gpp-5g-security-overview

5G mobile networks: A cheat sheet

17 Aug

As LTE networks become increasingly saturated, mobile network operators are planning for the 5G future. Here is what business professionals and mobile users need to know about 5G networks.

What is 5G?

5G refers to the fifth generation of mobile phone networks. Since the introduction of the first standardized mobile phone network in 1982, succeeding standards have been adopted and deployed approximately every nine years. GSM, the 2nd generation wireless network, was first deployed in 1992, while a variety of competing 3G standards began deployment in 2001. The 4G LTE wireless technology standard was deployed by service providers in 2010. Now, technology companies and mobile network operators are actively deploying 5G cellular networks around the world for new mobile devices. These 5G deployments accompany transitional LTE technologies such as LTE Advanced and LTE Advanced Pro, which are used by network operators to provide faster speeds on mobile devices.

Principally, 5G refers to “5G NR (New Radio),” which is the standard adopted by 3GPP, an international cooperative responsible for the development of the 3G UMTS and 4G LTE standards. Other 5G technologies do exist. Verizon’s 5G TF network operates on 28 and 39 GHz frequencies, and is used only for fixed wireless broadband services, not in smartphones. Verizon’s 5G TF deployments were halted in December 2018, and will be transitioned to 5G NR in the future. Additionally, 5G SIG was used by KT for a demonstration deployment during the 2018 Winter Olympics in Pyeongchang.

5G NR allows for networks to operate on a wide variety of frequencies, including the frequencies vacated by decommissioning previous wireless communications networks. The 2G DCS frequency bands, the 3G E-GSM and PCS frequency bands, and the digital dividend of spectrum vacated by the transition to digital TV broadcasts are some of the bands available for use in 5G NR.

5G standards divide frequencies into two groups: FR1 (450 MHz – 6 GHz) and FR2 (24 GHz – 52 GHz). Most early deployments will be in the FR1 space. Research is ongoing into using FR2 frequencies, which are also known as extremely high frequency (EHF) or millimeter wave (mmWave) frequencies. Discussions of the suitability of millimeter wave frequencies have been published in IEEE journals as far back as 2013.

Millimeter wave frequencies allow for faster data speeds, though they do come with disadvantages. Because of the short distance of communication, millimeter wave networks have a much shorter range; for densely-populated areas, this requires deploying more base stations (conversely, this makes it well suited to densely-populated places such as arenas and stadiums). While this would be advantageous in certain use cases, it would be a poor fit for use in rural areas. Additionally, millimeter wave communication can be susceptible to atmospheric interference. Effects such as rain fade make it problematic for outdoor use, though even nearby foliage can disrupt a signal.

Tests of early 5G mmWave networks by sister site CNET surfaced a number of performance problems, with the Moto Z3Samsung Galaxy S10 5G, and LG V50 depleting their battery faster than on 4G networks. In the case of the Moto Z3—which uses a pogo-pin connected Moto Mod add-on to deliver 5G—four hours of testing completely drained the battery in the attachment; the use of sub-6 GHz 5G networks is expected to lessen this effect. Likewise, increased efficiency in Qualcomm’s upcoming Snapdragon X55 modem will alleviate some performance issues.

It is vital to remember that 5G is not an incremental or backward-compatible update to existing mobile communications standards. It does not overlap with 4G standards like LTE or WiMAX, and it cannot be delivered to existing phones, tablets, or wireless modems by means of tower upgrades or software updates, despite AT&T’s attempts to brand LTE Advanced as “5G E.”While upgrades to existing LTE infrastructure are worthwhile and welcome advances, these are ultimately transitional 4G technologies and do not provide the full range of benefits of 5G NR.

For an overview of when 5G smartphones are being released, as well as the benefits and drawbacks of 5G smartphones, check out TechRepublic’s cheat sheet about 5G smartphones.

What constitutes 5G technology?

For mobile network operators, the 3GPP has identified three aspects for which 5G should provide meaningful advantages over existing wireless mobile networks. These three heterogenous service types will coexist on the same infrastructure using network slicing, allowing network operators to create multiple virtual networks with differing performance profiles for differing service needs.

eMBB (Enhanced Mobile Broadband)

Initial deployments of 5G NR focused on eMBB, which provides greater bandwidth, enabling improved download and upload speeds, as well as moderately lower latency compared to 4G LTE. eMBB will be instrumental in enabling rich media applications such as mobile AR and VR, 4K and 360° video streaming, and edge computing.

URLLC (Ultra Reliable Low-Latency Communications)

URLLC is targeted toward extremely latency sensitive or mission-critical use cases, such as factory automation, robot-enabled remote surgery, and driverless cars. According to a white paper (PDF link) by Mehdi Bennis, Mérouane Debbah, and H. Vincent Poor of the IEEE, URLLC should target 1ms latency and block error rate (BLER) of 10−9 to 10−5, although attaining this “represents one of the major challenges facing 5G networks,” as it “introduces a plethora of challenges in terms of system design.”

Technologies that enable URLLC are still being standardized; these will be published in 3GPP Release 16, scheduled for mid-2020.

mMTC (Massive Machine Type Communications)

mMTC is a narrowband access type for sensing, metering, and monitoring use cases. Some mMTC standards that leverage LTE networks were developed as part of 3GPP Release 13, including eMTC (Enhanced Machine-Type Communication) and NB-IoT (Narrowband IoT). These standards will be used in conjunction with 5G networks, and extended to support the demands of URLLC use cases on 5G networks and frequencies in the future.

The ways in which 5G technologies will be commercialized are still being debated and planned among mobile network operators and communications hardware vendors. As different groups have differing priorities, interests, and biases, including spectrum license purchases made with the intent of deploying 5G networks, the advantages of 5G will vary between different geographical markets and between consumer and enterprise market segments. While many different attributes are under discussion, 5G technology may consist of the following (the attributes are listed in no particular order).

Proactive content caching

Particularly for millimeter wave 5G networks, which require deploying more base stations compared to LTE and previous communications standards, those base stations in turn require connections to wired backhauls to transmit data across the network. By providing a cache at the base station, access delays can be minimized, and backhaul load can be reduced. This has the added benefit of reducing end-to-end delay. As 4K video streaming services—and smartphones with 4K screens—become more widespread, this caching capability will be important to improve quality of service.

Multiple-hop networks and device-to-device communication

In LTE networks, cellular repeaters and femtocells bridge gaps in areas where signal strength from traditional base stations is inadequate to serve the needs of customers. These can be in semi-rural areas where population density complicates serving customers from one base station, as well as in urban areas where architectural design obstructs signal strength. Using multiple-hop networks in 5G extends the cooperative relay concept by leveraging device-to-device communication to increase signal strength and availability.

Seamless vertical handover

Although proposals for 5G position it as the “one global standard” for mobile communications, allowing devices to seamlessly switch to a Wi-Fi connection, or fall back to LTE networks without delay, dropped calls, or other interruptions, is a priority for 5G.

Who does 5G benefit?

Remote workers / off-site job locations

One of the major focuses of 5G is the ability to use wireless networks to supplant traditional wireline connections by increasing data bandwidth available to devices and minimizing latency. For telecommuters, this greatly increases flexibility in work locations, allowing for cost-effective communication with your office, without being tied to a desk in a home office with a wireline connection.

For situations that involve frequently changing off-site job locations, such as location movie shoots or construction sites, lower technical requirements for 5G deployment allow for easily set up a 5G connection to which existing devices can connect to a 5G router via Wi-Fi. For scenes of live breaking news, 5G technologies can be used to supplant the traditional satellite truck used to transmit audio and video back to the newsroom. Spectrum formerly allocated to high-speed microwave satellite links has been repurposed for 5G NR communication.

Internet of Things (IoT) devices

One priority for the design of 5G networks is to lower barriers to network connectivity for IoT devices. While some IoT devices (e.g., smartwatches) have LTE capabilities, the practical limitations of battery sizes that can be included in wearable devices and the comparatively high power requirements of LTE limit the usefulness of mobile network connectivity in these situations. Proposals for 5G networks focusing on reducing power requirements, and the use of lower-power frequencies such as 600 MHz, will make connecting IoT devices more feasible.

Smart cities, office buildings, arenas, and stadiums

The same properties that make 5G technologies a good fit for IoT devices can also be used to improve the quality of service for situations in which large numbers of connected devices make extensive use of the mobile network in densely populated areas. These benefits can be realized easily in situations with variable traffic—for instance, arenas and stadiums are generally only populated during sporting events, music concerts, and other conventions. Large office towers, such as the 54-story Mori Tower in Tokyo’s Roppongi Hills district, are where thousands of employees work during the week. Additionally, densely populated city centers can benefit from the ability of 5G networks to provide service to more devices in physically smaller spaces.

When and where are 5G rollouts happening?

Early technical demonstrations

The first high-profile 5G rollout was at the 2018 Winter Olympic Games in Pyeongchang, South Korea. KT (a major mobile network operator) Samsung, and Intel collaborated to deliver gigabit-speed wireless broadband, and low-latency live streaming video content. During the games, 100 cameras were positioned inside the Olympic Ice Arena, which transmitted the video to edge servers, then to KT’s data center to be processed into “time-sliced views of the athletes in motion,” and then transmitted back to 5G-connected tablets for viewing. This demonstration used prototype 5G SIG equipment, which is distinct from the standardized 5G NR hardware and networks being commercialized worldwide.

Similarly, Intel and NTT Docomo have announced a partnership to demonstrate 5G technology at the 2020 Tokyo Olympic Games. The companies will use 5G networks for 360-degree, 8K-video streaming, drones with HD cameras, and smart city applications, including “pervasive facial recognition, useful for everything from stadium access to threat reduction.”

Other 5G tests and rollouts have occurred worldwide. Ericsson and Intel deployed a 5G connection to connect Tallink cruise ships to the Port of Tallinn in Estonia. Huawei and Intel demonstrated 5G interoperability tests at Mobile World Congress 2018. In China, ZTE conducted tests in which the company achieved speeds in excess of 19 Gbps on a 3.5 GHz base station. Additionally, in tests of high-frequency communications, ZTE exceeded 13 Gbps using a 26 GHz base station, and a latency of 0.416 ms in a third test for uRLLC.

Where is 5G available in the US?

Verizon Wireless deployed mmWave-powered 5G, marketed as “Ultra Wideband (UWB),” in Chicago, IL and Minneapolis, MN on April 3, 2019; in Denver, CO on June 27, 2019; in Providence, RI on July 1, 2019; in St. Paul, MN on July 18, 2019; and in Atlanta, GA, Detroit, MI, Indianapolis, IN, and Washington, DC on July 31, 2019.

Future deployments of Verizon’s 5G services have been announced for Boston, MA, Charlotte, NC, Cincinnati, Cleveland, and Columbus, OH, Dallas, TX, Des Moines, IA, Houston, TX, Little Rock, AR, Memphis, TN, Phoenix, AZ, Providence, RI, San Diego, CA, and Salt Lake City, UT, as well as Kansas City, by the end of 2019.

Verizon Wireless started deployments of its 5G fixed wireless internet service on October 1, 2018 in Los Angeles and Sacramento, CA, Houston, TX, and Indianapolis, IN. Verizon’s initial 5G network deployments use its proprietary 5G TF hardware, though the company plans to transition these networks to 5G NR in the future. Verizon’s 5G TF network is only used for home internet service, not in smartphones.

AT&T has active 5G deployments in Atlanta, GA, Austin, Dallas, Houston, San Antonio, and Waco, TX, Charlotte, NC, Indianapolis, IN, Jacksonville and Orlando, FL, Las Vegas, NV, Los Angeles, San Diego, San Francisco, and San Jose, CA, Louisville, KY, Nashville, TN, New Orleans, LA, New York City, NY, Oklahoma City, OK, and Raleigh, NC. Deployments have also been announced for Chicago, IL, Cleveland, OH, and Minneapolis, MN.

AT&T has deployed LTE Advanced nationwide; the company is marketing LTE Advanced as a “5G Evolution” network, though LTE-Advanced is not a 5G technology. AT&T has a history of mislabeling network technologies; the company previously advertised the transitional HSDPA network as 4G, though this is commonly considered to be an “enhanced 3G” or “3.5G” standard.

Sprint started deployments of 5G on May 30, 2019 in the Dallas / Ft. Worth and Houston, TX, Kansas City / Overland Park, KS, and Atlanta, GA metro areas. Sprint’s 5G networks run on 2.5 GHz, providing more widespread coverage throughout a region than is possible on line-of-sight mmWave connections, though with a modest decrease in speed compared to mmWave networks. Sprint activated 5G service in Chicago on July 11, 2019. The company has also announced plans to deploy 5G in Los Angeles, CA, New York, NY, Phoenix, AZ, and Washington, DC.

T-Mobile USA has active 5G services in Atlanta, GA and Cleveland, OH, with future plans to bring 5G services to Dallas, TX, Los Angeles, CA, Las Vegas, NV, and New York, NY. T-Mobile’s deployment is powered by Ericcson AIR 3246 modems, which support both 4G LTE and 5G NR. This equipment allows for 5G and LTE networks to be operated from the same equipment.

The purchase of Sprint by T-Mobile has been approved by the Justice Department, though a multi-state lawsuit is aiming to prevent the deal from proceeding. If the merger goes forward, “only the New T-Mobile will be able to deliver… real, game-changing 5G,” according to T-Mobile CEO John Legere in a June 2019 blog post. Following a merger, the New T-Mobile will have 600 MHz low-band, 2.5 GHz mid-band, and mmWave spectrum holdings, putting it at an advantage relative to AT&T and Verizon.

Where is 5G available in the UK?

EE debuted 5G services in Belfast, Birmingham, Cardiff, Edinburgh, London, and Manchester on May 30, 2019. Availability of 5G by the end of 2019 is planned for Bristol, Coventry, Glasgow, Hull, Leeds, Leicester, Liverpool, Newcastle, Nottingham, and Sheffield. Availability of 5G in 2020 is planned for Aberdeen, Cambridge, Derby, Gloucester, Peterborough, Plymouth, Portsmouth, Southampton, Wolverhampton, and Worcester.

BT, which owns EE, is anticipated to deploy separate BT-branded 5G services in London, Manchester, Edinburgh, Birmingham, Cardiff, and Belfast in autumn 2019.

Vodafone provides 5G services in Birkenhead, Birmingham, Bolton, Bristol, Cardiff, Gatwick, Glasgow, Lancaster, Liverpool, London, Manchester, Newbury, Plymouth, Stoke-on-Trent, and Wolverhampton at present, with deployments planned for Blackpool, Bournemouth, Guildford, Portsmouth, Reading, Southampton, and Warrington by the end of 2019.

Three will begin rollout of 5G services in London in August 2019, with services for Birmingham, Bolton, Bradford, Brighton, Bristol, Cardiff, Coventry, Derby, Edinburgh, Glasgow, Hull, Leeds, Leicester, Liverpool, Manchester, Middlesbrough, Milton Keynes, Nottingham, Reading, Rotherham, Sheffield, Slough, Sunderland, and Wolverhampton expected before the end of the year.

Three and Vodafone do not charge a premium for 5G network services in the UK, compared to their rate plans for 4G.

O₂ announced availability of 5G services for Belfast, Cardiff, Edinburgh, London, Slough, and Leeds “from October 2019,” with plans to bring expand 5G services to “parts of 20 towns and cities, before rolling out to a total of 50 by summer 2020.”

Where is 5G available in Australia?

Optus has 100 5G-capable sites in service, and has pledged to build 1,200 by March 2020.

Telstra commenced rollout of 5G networks, starting with the Gold Coast in August 2018. Telstra services select neighborhoods in Adelaide, Brisbane, Canberra, Gold Coast, Hobart, Launceston, Melbourne, Perth, Sydney, and Toowoomba.

Australia’s National Broadband Network (NBN) operator has declared its intent to provide 5G fixed wireless internet access in a statement to ZDNet.

Chinese vendors Huawei and ZTE have been banned by the Australian government from providing 5G networking equipment to mobile network operators due to national security concerns.

Where else in the world is 5G available?

South Korea was the first country to have a commercially available 5G network, with SK Telecom, KT, and LG Uplus activating 5G networks on April 3, 2019, two hours before Verizon Wireless activated 5G in the US, according to ZDNet’s Cho Mu-Hyun. By April 30, 2019, 260,000 subscribers in South Korea were using 5G networks. KT, the country’s second-largest mobile carrier, is working on deployments of in-building repeaters for use in crowded buildings such as airports and train stations.

5G is also seen as vital for economic development among Gulf states, with Saudi Arabia including 5G as part of the Vision 2030 economic development plan, and Qatari network operator Ooredoo claiming “the first commercially available 5G network in the world” on May 14, 2018, prior to the availability of smartphones that can use 5G.

Ookla maintains a map of 5G network services worldwide, with networks categorized into Commercial Availability, Limited Availability, and Pre-Release to demonstrate the extent of availability for each observed deployment.

How does a 5G future affect enterprises and mobile users?

As technology advances, older devices will inevitably reach end-of-life; in the mobile space, this is an outsized concern, as wireless spectrum is a finite resource. Much in the same way that the digital switchover occurred for over-the-air TV broadcasts, older mobile networks are actively being dismantled to free spectrum for next-generation networks, including transitional LTE Advanced, LTE Advanced Pro, and “true” 5G networks.

In the US, AT&T disabled its 2G network on January 1, 2017, rendering countless feature phones—as well as the original iPhone—unusable. Verizon plans to disable its legacy 2G and 3G networks by the end of 2019, which will render most feature phones and older smartphones unusable, as well as IoT devices such as water meters. Verizon stopped activations of 3G-only phones in July 2018. End-of-life plans for the 2G networks of Sprint and T-Mobile have not been publicly disclosed.

Additionally, as 5G is used increasingly to deliver wireless broadband, wireline broadband providers will face competition as the two services approach feature parity. With many people using smartphones both as their primary computing device and for tethering a traditional computer to the internet, the extra cost of a traditional wireline connection may become unnecessary for some people, and enable those outside the reach of traditional wireline connections to have affordable access to high-speed for the first time.

Business customers may also integrate 5G technology in proximity-targeted marketing. 5G’s reliance on microcells can be used as a secondary means of verification to protect against GPS spoofing, making proximity-targeted marketing resistant to abuse.

As 5G specifications are designed around the needs of businesses, the low-power and low-latency attributes are expected to spark a revolution in IoT deployments. According to Verizon Wireless President Ronan Dunne, 5G will enable the deployment of 20 billion IoT devices by 2020, leading to the creation of the “industrial internet,” affecting supply chain management, as well as agriculture and manufacturing industries. These same attributes also make 5G well suited to use cases that require continuous response and data analysis, such as autonomous vehicles, traffic control, and other edge computing use cases.

Source: https://clearcritique.com/5g-mobile-networks-a-cheat-sheet/

3GPP Burns Midnight Oil for 5G

10 Sep

Long hours, streamlined features to finish draft. The race is on to deliver some form of 5G as soon as possible.

An Intel executive painted a picture of engineers pushing the pedal to the metal to complete an early version of the 5G New Radio (NR) standard by the end of the year. She promised that Intel will have a test system based on its x86 processors and FPGAs as soon as the spec is finished.

The 3GPP group defining the 5G NR has set a priority of finishing a spec for a non-standalone version by the end of the year. It will extend existing LTE core networks with a 5G NR front end for services such as fixed-wireless access.

After that work is finished, the radio-access group will turn its attention to drafting a standalone 5G NR spec by September 2018.

“Right now, NR non-standalone is going fine with lots of motivation, come hell or high water, to declare a standard by the end of December,” said Asha Keddy, an Intel vice president and general manager of its next-generation and standards group. “The teams don’t even break until 10 p.m. on many days, and even then, sometimes they have sessions after dinner.”

To lighten the load, a plenary meeting of the 3GPP radio-access group next week is expected to streamline the proposed feature set for non-standalone NR. While a baseline of features such as channel coding and subcarrier spacing have been set, some features are behind schedule for being defined, such as MIMO beam management, said Keddy.

It’s hard to say what features will be in or out at this stage, given that decisions will depend on agreement among carriers. “Some of these are hit-or-miss, like when [Congress] passes a bill,” she said.

It’s not an easy job, given the wide variety of use cases still being explored for 5G and the time frames involved. “We are talking about writing a standard that will emerge in 2020, peak in 2030, and still be around in 2040 — it’s kind of a responsibility to the future,” she said.

The difficulty is even greater given carrier pressure. For example, AT&T and Verizon have announced plans to roll out fixed-wireless access services next year based on the non-standalone 5G NR, even though that standard won’t be formally ratified until late next year.

N

An Intel 5G test system in the field. (Images: Intel)

An Intel 5G test system in the field. (Images: Intel)

Companies such as Intel and Qualcomm have been supplying CPU- and FPGA-based systems for use in carrier trials. They have been updating the systems’ software to keep pace with developments in 3GPP and carrier requests.

For its part, Intel has deployed about 200 units of its 5G test systems to date. They will be used on some of the fixed-wireless access trials with AT&T and Verizon in the U.S., as well as for other use cases in 5G trials with Korea Telecom and NTT Docomo in Japan.

Some of the systems are testing specialized use cases in vertical markets with widely varied needs, such as automotive, media, and industrial, with companies including GE and Honeywell. The pace of all of the trials is expected to pick up next year once the systems support the 5G non-standalone spec.

Intel’s first 5G test system was released in February 2016 supporting sub-6-GHz and mm-wave frequencies. It launched a second-generation platform with integrated 4×4 MIMO in August 2016.

The current system supports bands including 600–900 MHz, 3.3–4.2 GHz, 4.4–4.9 GHz, 5.1–5.9 GHz, 28 GHz, and 39 GHz. It provides data rates up to 10 Gbits/second.

Keddy would not comment on Intel’s plans for dedicated silicon for 5G either in smartphones or base stations.

In January, Intel announced that a 5G modem for smartphones made in its 14-nm process will sample in the second half of this year. The announcement came before the decision to split NR into the non-standalone and standalone specs.

Similarly, archrival Qualcomm announced late last year that its X50 5G modem will sample in 2017. It uses eight 100-MHz channels, a 2×2 MIMO antenna array, adaptive beamforming techniques, and 64 QAM to achieve a 90-dB link budget and works with a separate 28-GHz transceiver and power management chips.

Source: http://www.eetimes.com/document.asp?doc_id=1332248&page_number=2

Why the industry accelerated the 5G standard, and what it means

17 Mar

The industry has agreed, through 3GPP, to complete the non-standalone (NSA) implementation of 5G New Radio (NR) by December 2017, paving the way for large-scale trials and deployments based on the specification starting in 2019 instead of 2020.

Vodafone proposed the idea of accelerating development of the 5G standard last year, and while stakeholders debated various proposals for months, things really started to roll just before Mobile World Congress 2017. That’s when a group of 22 companies came out in favor of accelerating the 5G standards process.

By the time the 3GPP RAN Plenary met in Dubrovnik, Croatia, last week, the number of supporters grew to more than 40, including Verizon, which had been a longtime opponent of the acceleration idea. They decided to accelerate the standard.

At one time over the course of the past several months, as many as 12 different options were on the table, but many operators and vendors were interested in a proposal known as Option 3.

According to Signals Research Group, the reasoning went something like this: If vendors knew the Layer 1 and Layer 2 implementation, then they could turn the FGPA-based solutions into silicon and start designing commercially deployable solutions. Although operators eventually will deploy a new 5G core network, there’s no need to wait for a standalone (SA) version—they could continue to use their existing LTE EPC and meet their deployment goals.

“Even though a lot of work went into getting to this point, now the real work begins. 5G has officially moved from a study item to a work item in 3GPP.”

Meanwhile, a fundamental feature has emerged in wireless networks over the last decade, and we’re hearing a lot more about it lately: The ability to do spectrum aggregation. Qualcomm, which was one of the ring leaders of the accelerated 5G standard plan, also happens to have a lot of engineering expertise in carrier aggregation.

“We’ve been working on these fundamental building blocks for a long time,” said Lorenzo Casaccia, VP of technical standards at Qualcomm Technologies.

Casaccia said it’s possible to aggregate LTE with itself or with Wi-Fi, and the same core principle can be extended to LTE and 5G. The benefit, he said, is that you can essentially introduce 5G more casually and rely on the LTE anchor for certain functions.

In fact, carrier aggregation, or CA, has been emerging over the last decade. Dual-carrier HSPA+ was available, but CA really became popularized with LTE-Advanced. U.S. carriers like T-Mobile US boast about offering CA since 2014 and Sprint frequently talks about the ability to do three-channel CA. One can argue that aggregation is one of the fundamental building blocks enabling the 5G standard to be accelerated.

Of course, even though a lot of work went into getting to this point, now the real work begins. 5G has officially moved from a study item to a work item in 3GPP.

Over the course of this year, engineers will be hard at work as the actual writing of the specifications needs to happen in order to meet the new December 2017 deadline.

AT&T, for one, is already jumping the gun, so to speak, preparing for the launch of standards-based mobile 5G as soon as late 2018. That’s a pretty remarkable turn of events given rival Verizon’s constant chatter about being first with 5G in the U.S.

Verizon is doing pre-commercial fixed broadband trials now and plans to launch commercially in 2018 at last check. Maybe that will change, maybe not.

Historically, there’s been a lot of worry over whether other parts of the world will get to 5G before the U.S. Operators in Asia in particular are often proclaiming their 5G-related accomplishments and aspirations, especially as it relates to the Olympics. But exactly how vast and deep those services turn out to be is still to be seen.

Further, there’s always a concern about fragmentation. Some might remember years ago, before LTE sort of settled the score, when the biggest challenge in wireless tech was keeping track of the various versions: UMTS/WCDMA, HSPA and HSPA+, cdma2000, 1xEV-DO, 1xEV-DO Revision A, 1xEV-DO Revision B and so on. It’s a bit of a relief to no longer be talking about those technologies. And most likely, those working on 5G remember the problems in roaming and interoperability that stemmed from these fragmented network standards.

But the short answer to why the industry is in such a hurry to get to 5G is easy: Because it can.

Like Qualcomm’s tag line says: Why wait? The U.S. is right to get on board the train. With any luck, there will actually be 5G standards that marketing teams can legitimately cite to back up claims about this or that being 5G. We can hope.

Source: http://www.fiercewireless.com/tech/editor-s-corner-why-hurry-to-accelerate-5g

Another course correction for 5G: network operators want closer NFV collaboration

9 Mar
  • Last week 22 operators and vendors (the G22) pushed for a 3GPP speed-up
  • This week an NFV White Paper: this time urging closer 5G & NFV interworking 
  • 5G should support ‘cloud native’ functions to optimise reuse

Just over four years ago, in late 2012, the industry was buzzing with talk of network functions virtualization (NFV). With the publication of the NFV White Paper and the establishment of the ETSI ISG, what had been a somewhat academic topic was suddenly on a timeline. And it had a heavyweight set of carrier backers and pushers who were making it clear to the vendor community that they expected it to “play nice” and to design, test and produce NFV solutions in a spirit of coopetition.

By most accounts the ETSI NFV effort has lived up to and beyond expectations. NFV is here and either in production or scheduled for deployment by most of the world’s telcos.

Four years later, with 5G now just around the corner, another White Paper has been launched. This time its objective is to urge both NFV and 5G standards-setters to properly consider operator requirements and priorities for the interworking of NFV and 5G, something they maintain is critical for network operators who are basing their futures on the successful convergence of the two sets of technologies.

NFV_White_Paper_5G is, the authors say, completely independent of the NFV ISG, is not an NFV ISG document and is not endorsed by it. The 23 listed network operators who have put their names to the document include Cablelabs, Bell Canada, DT, Chinas Mobile and Unicom, BT, Orange, Sprint, Telefonica and Vodafone.

Many of the telco champions of the NFV ISG are authors; in particular Don Clarke, Diego López and Francisco Javier Ramón Salguero, Bruno Chatras and Markus Brunner.

The paper points out that if NFV was a solution looking for a problem, then 5G is just the sort of complex problem it requires. Taken together, 5G’s use cases imply a need for high scalability, ultra-low latency, an ability to support multiple concurrent sessions; ultra-high reliability and high security. It points out that each 5G use case has significantly different characteristics and demands specific combinations of these requirements to make it work. NFV has the functions which can satisfy the use cases: things like Network Slicing, Edge Computing, Security, Reliability, and Scalability are all there and ready to be put to work.

As NFV is explicitly about separating data and control planes to provide a flexible, future-proofed platform for whatever you want to run over it, then 5G and NFV would seem, by definition, to be perfect partners already.

Where’s the issue?

What seems to be worrying the NFV advocates is that an NFV-based infrastructure designed for 5G needs to go further if it’s to meet carriers’ broader network goals. That means it will be tasked to not only enable 5G, but also support other applications –  many spawned by 5G but others simply ‘fixed’ network applications evolving from the existing network.

Then there’s a problem of reciprocity. Again, if the NFV ISG is to support that broader set of purposes and possible developments, not only should it work with other bodies to identify and address gaps for it to support; the process should be two-way.

One of the things the operators behind the paper seem most anxious to avoid is wasteful duplication of effort. So they want to encourage identity and reuse of “common technical NFV features”  to avoid that happening.

“Given that the goal of NFV is to decouple network functions from hardware, and virtualized    network functions are designed to run in a generic IT cloud    environment, cloud-native design principles and cloud-friendly licensing models are critical matters,” says the paper.

The NFV ISG has very much developed its thinking around those so-called ‘Cloud-native’ functions instead of big fat monolithic ones (which are often just re-applications of proprietary ‘non virtual’ functions). By contrast ‘cloud native’ is where functions are decomposed into reusable components which gives the approach all sorts of advantages.  Obviously a smooth interworking of NFV and 5G won’t be possible if 5G doesn’t follow this approach too.

As you would expect there has been outreach between the standards groups already, but clearly a few specialist chats at industry body meetings are not seen, by these operator representatives at least, as enough to ensure proper convergence of NFV and 5G. Real compromises will have to sought and made.

Watch Preparing for 5G: what should go on the CSP ‘to do’ list?

Source: http://www.telecomtv.com/articles/5g/another-course-correction-for-5g-network-operators-want-closer-nfv-collaboration-14447/
Picture: via Flickr © Malmaison Hotels & Brasseries (CC BY-ND 2.0)

%d bloggers like this: