Tag Archives: HSPA+

WiMAX vs. LTE vs. HSPA+: who cares who wins?

2 Oct

Who cares who wins the 4G cup?

“We must stop the confusion about which technology is going to win; it achieves nothing positive and risks damage to the entire industry.”

Anyone among the curious band of people who track articles about the status of mobile broadband (and the chances are that you are one of them) will have noticed an interesting trend over the past 18 months: the temperature of the debate about the technology most likely to succeed is rising rapidly. Increasingly polarised articles are published on a daily basis, each arguing that Long Term Evolution (LTE) is the 4G technology of choice, or that WiMAX is racing ahead, or that it’s best to stick with good old 3GPP because HSPA+ is going to beat both of them. It remains surprising that their articles invite us, their readers, to focus slavishly on the question “WiMAX vs. LTE vs. HSPA+: which one will win?”

The question that we should ask of the authors is “Who cares who wins?” The torrent of propaganda washes over the essence of mobile broadband and puts sustained growth in the mobile industry at risk. By generating fear, uncertainty and doubt, the mobile broadband “battle” diverts attention away from the critical issues that will determine the success or failure of these evolving technologies.  The traditional weapon of the partisan author is the mighty “Mbps”; each wields their peak data rates to savage their opponents.

In the HSPA+ camp, authors fire out theoretical peak data rates of 42Mbps DL and 23 Mbps UL. The WiMAX forces respond with theoretical peak data rates of 75Mbps DL and 30Mbps UL. LTE joins the fray by unleashing its theoretical peak data rates of 300Mbps DL and 75 Mbps UL. All hell breaks loose, or so it would appear. Were it not for the inclusion of the word “theoretical”, we could all go home to sleep soundly and wake refreshed, safe in the knowledge that might is right. The reality is very different.

Sprint has stated that it intends to deliver services at between 2 and 4 Mbps to its customers with Mobile WiMAX. In the real world, HSPA+ and LTE are likely to give their users single digit Mbps download speeds.  Away from the theoretical peak data rates, the reality is that the technologies will be comparable with each other, at least in the experience of the user. These data rates, from a user’s perspective, are a great improvement on what you will see while sitting at home on your WiFi or surfing the web while on a train. The problem is that the message being put out to the wider population has the same annoying ringtone as those wild claims that were made about 3G and the new world order that it would usher in. Can you remember the allure of video calls? Can you remember the last time you actually saw someone making a video call?

3G has transformed the way that people think about and use their mobile phones, but not in the way that they were told to expect. In the case of 3G, mismanagement of customer expectations put our industry back years. We cannot afford to repeat this mistake with mobile broadband. Disappointed customers spend less money because they don’t value their experience as highly as they had been led to expect by advertisers.  Disappointed customers share their experience with friends and family, who delay buying into the mobile broadband world.  What we all want are ecstatic customers who can’t help but show off their device. We need to produce a ‘Wow’ factor that generates momentum in the market.

Every pundit has a pet theory about the likely deployment of mobile broadband technologies. One will claim that HSPA+ might delay the deployment of LTE. Another will posit that WiMAX might be adopted, predominantly, in the laptop or netbook market. A third will insist that LTE could replace large swathes of legacy technologies.  These scenarios might happen, but they might not, too.

More likely, but less stirring, is the prediction that they are all coming, they’ll be rolled out to hundreds of millions of subscribers and, within five years, will be widespread. We must stop the confusion about which technology is going to win; it achieves nothing positive and risks damage to the entire industry.

Confusion unsettles investors, who move to other markets and starve us of the R&D funds needed to deliver mobile broadband. At street level, confusion leads early adopters to hold off making commitments to the new wave of technology while they “wait it out” to ensure they don’t buy a Betamax instead of a VHS.  Where we should focus, urgently, is on the two topics that demand open discussion and debate. First, are we taking the delivery of a winning user experience seriously? Secondly, are we making plans to cope with the data tidal wave that will follow a successful launch?

The first topic concerns delivery to the end user of a seamless application experience that successfully converts the improved data rates to improvements on their device. This can mean anything from getting LAN-like speeds for faster email downloads through to slick, content-rich and location-aware applications. As we launch mobile broadband technologies, we must ensure that new applications and capabilities are robust and stable. More effort must be spent developing and testing applications so that the end user is blown away by their performance.

The second topic, the tidal wave of data, should force us to be realistic about the strain placed on core networks by an exponential increase in data traffic. We have seen 10x increases in traffic since smartphones began to boom. Mobile device makers, network equipment manufacturers and application developers must accept that there will be capacity shortages in the short term and, in response, must design, build and test applications rigorously. We need applications with realistic data throughput requirements and the ability to catch data greedy applications before they reach the network.

In Anite, we see the demands placed on test equipment by mobile broadband technologies at first hand. More than testing the technical integrity of the protocol stack and its conformance to the core specifications, we produce new tools that test applications and simulate the effects of anticipated capacity bottlenecks. Responding to the increased demand for mobile applications, we’re developing test coverage that measures applications at the end-user level. Unfortunately, not everyone is thinking that far ahead. Applications that should be “Wow”, in theory, may end up producing little more than a murmur of disappointment in the real world.

So, for the sake of our long-term prospects, let’s stop this nonsense about how one technology trounces another. Important people, the end users, simply do not care.  WiMAX, LTE and HSPA+ will all be widely deployed. As an industry, our energy needs to be focused on delivering services and applications that exceed the customer expectations.  Rather than fighting, we should be learning from each other’s experiences.  If we do that, our customers will reward us with growing demand. If we all get sustained growth, then don’t we all win..?

Source: http://www.telecoms.com/11695/wimax-vs-lte-vs-hspa-who-cares-who-wins/

Advertisements

Enabling customer connectivity with WiFi

20 Jun

Operating in the telecomms sector, Westbase Technology has a distinctive B2B product and customer portfolio. However, the changing nature of mobile communications has seen a rise in the number of product applications, specifically WiFi, related to the everyday consumer or customer.

According to ‘The Mobile Economy 2013’ Report published by the GSMA earlier this year:

“Almost half the population of the earth now uses mobile communications. A billion mobile subscribers were added in the last 4 years to leave the total standing at 3.2 billion…Given the strong growth trajectory and pace of innovation, we are confident that the next few years will see continued growth with a further 700 million subscribers expected to be added by 2017 and the 4 billion mark to be passed in 2018.”

As consumers increasingly surf, like, follow, watch and comment it’s safe to say that we are all just one single step away from M2M technology. It permeates almost every facet of our modern lives. So let’s look at a few examples:

1) Health and wellbeing – have you ever had an accident and been thankful for the emergency vehicle that arrived on the scene, yes it was connected back to a control centre using M2M.

2) Everyday finance – how many times in a week do you withdraw cash from a cashpoint or ATM, M2M technology helps to ensure that you have secure and reliable access to your money.

3) Retail and shopping – interestingly this is something that happens and interacts on a subconscious level, in-store advertising, digital screens and street billboards are all managed with M2M technology.

One of the key factors driving forward the cross-sector adoption of M2M technology is the need for always-on connectivity, both commercially and for consumers. We want to see what people are saying on Facebook, buy that DVD or book on Amazon, plan our journeys with National Rail or watch something we missed the night before on BBC iPlayer…we simply need information at our fingertips and on our devices!

BYOD (bring your own device) has also become a very popular term over the last few years, staff are now using their own devices more and more for both personal and work purposes, checking emails, taking calls, checking stock, managing calendars. ICT managers are adapting technology to ensure that systems work across a plethora of devices. We bring our devices with us everywhere. In fact when I was planning my upcoming holiday this summer, one of the noticeable points was whether or not our resort had WiFi so we could be connected (yes that really just means to put photos on Facebook and check email). The resort does, but it’s not free.

WiFi is what I like to call an M2M enabler (along with fixed-line and cellular 3G and 4G), it helps to connect one device to one another. So should WiFi be free to consumers? I watched this BBC report about the recommendations being proposed in Australia and specifically the potential impact of free WiFi in hotels there.

Quality of service was an issue that was raised in delivering a good WiFi network, but this can easily be overcome with a CradlePoint device like the COR IBR600 3GCOR IBR600 4G or MBR1400. These cellular routers make it easy for companies (and hoteliers) to enable reliable high-speed mobile broadband access for both employees and customers.

In fact, when coupled with a hotspot management solution, provided by the likes of HotspotSystem, who deliver an effective yet simple management and billing service for businesses who want to provide mobile broadband for their customers, this is a perfect solution for providing access to people who want and need their WiFi connectivity while they’re on the move or in a specific location. Businesses can provide a good quality network, which is reliable, inexpensive, easy to deploy and manage.

With retailers, transport networks and even smart cities getting connected, isn’t it time that other industry sectors like hoteliers looked at the wider opportunities a managed and reliable WiFi network can offer them. The debate over free vs paid will no doubt continue, but as long as WiFi access is available, surely that is a first step in smart connectivity for all.

Source: http://westbasethinking.wordpress.com/2013/06/19/enabling-customer-connectivity-with-wifi/

WiMAX vs. LTE vs. HSPA+: who cares who wins?

6 Feb

Who cares who wins the 4G cup?

“We must stop the confusion about which technology is going to win; it achieves nothing positive and risks damage to the entire industry.”

Anyone among the curious band of people who track articles about the status of mobile broadband (and the chances are that you are one of them) will have noticed an interesting trend over the past 18 months: the temperature of the debate about the technology most likely to succeed is rising rapidly. Increasingly polarised articles are published on a daily basis, each arguing that Long Term Evolution (LTE) is the 4G technology of choice, or that WiMAX is racing ahead, or that it’s best to stick with good old 3GPP because HSPA+ is going to beat both of them. It remains surprising that their articles invite us, their readers, to focus slavishly on the question “WiMAX vs. LTE vs. HSPA+: which one will win?”

The question that we should ask of the authors is “Who cares who wins?” The torrent of propaganda washes over the essence of mobile broadband and puts sustained growth in the mobile industry at risk. By generating fear, uncertainty and doubt, the mobile broadband “battle” diverts attention away from the critical issues that will determine the success or failure of these evolving technologies.  The traditional weapon of the partisan author is the mighty “Mbps”; each wields their peak data rates to savage their opponents.

In the HSPA+ camp, authors fire out theoretical peak data rates of 42Mbps DL and 23 Mbps UL. The WiMAX forces respond with theoretical peak data rates of 75Mbps DL and 30Mbps UL. LTE joins the fray by unleashing its theoretical peak data rates of 300Mbps DL and 75 Mbps UL. All hell breaks loose, or so it would appear. Were it not for the inclusion of the word “theoretical”, we could all go home to sleep soundly and wake refreshed, safe in the knowledge that might is right. The reality is very different.

Sprint has stated that it intends to deliver services at between 2 and 4 Mbps to its customers with Mobile WiMAX. In the real world, HSPA+ and LTE are likely to give their users single digit Mbps download speeds.  Away from the theoretical peak data rates, the reality is that the technologies will be comparable with each other, at least in the experience of the user. These data rates, from a user’s perspective, are a great improvement on what you will see while sitting at home on your WiFi or surfing the web while on a train. The problem is that the message being put out to the wider population has the same annoying ringtone as those wild claims that were made about 3G and the new world order that it would usher in. Can you remember the allure of video calls? Can you remember the last time you actually saw someone making a video call?

3G has transformed the way that people think about and use their mobile phones, but not in the way that they were told to expect. In the case of 3G, mismanagement of customer expectations put our industry back years. We cannot afford to repeat this mistake with mobile broadband. Disappointed customers spend less money because they don’t value their experience as highly as they had been led to expect by advertisers.  Disappointed customers share their experience with friends and family, who delay buying into the mobile broadband world.  What we all want are ecstatic customers who can’t help but show off their device. We need to produce a ‘Wow’ factor that generates momentum in the market.

Every pundit has a pet theory about the likely deployment of mobile broadband technologies. One will claim that HSPA+ might delay the deployment of LTE. Another will posit that WiMAX might be adopted, predominantly, in the laptop or netbook market. A third will insist that LTE could replace large swathes of legacy technologies.  These scenarios might happen, but they might not, too.

More likely, but less stirring, is the prediction that they are all coming, they’ll be rolled out to hundreds of millions of subscribers and, within five years, will be widespread. We must stop the confusion about which technology is going to win; it achieves nothing positive and risks damage to the entire industry.

Confusion unsettles investors, who move to other markets and starve us of the R&D funds needed to deliver mobile broadband. At street level, confusion leads early adopters to hold off making commitments to the new wave of technology while they “wait it out” to ensure they don’t buy a Betamax instead of a VHS.  Where we should focus, urgently, is on the two topics that demand open discussion and debate. First, are we taking the delivery of a winning user experience seriously? Secondly, are we making plans to cope with the data tidal wave that will follow a successful launch?

The first topic concerns delivery to the end user of a seamless application experience that successfully converts the improved data rates to improvements on their device. This can mean anything from getting LAN-like speeds for faster email downloads through to slick, content-rich and location-aware applications. As we launch mobile broadband technologies, we must ensure that new applications and capabilities are robust and stable. More effort must be spent developing and testing applications so that the end user is blown away by their performance.

The second topic, the tidal wave of data, should force us to be realistic about the strain placed on core networks by an exponential increase in data traffic. We have seen 10x increases in traffic since smartphones began to boom. Mobile device makers, network equipment manufacturers and application developers must accept that there will be capacity shortages in the short term and, in response, must design, build and test applications rigorously. We need applications with realistic data throughput requirements and the ability to catch data greedy applications before they reach the network.

In Anite, we see the demands placed on test equipment by mobile broadband technologies at first hand. More than testing the technical integrity of the protocol stack and its conformance to the core specifications, we produce new tools that test applications and simulate the effects of anticipated capacity bottlenecks. Responding to the increased demand for mobile applications, we’re developing test coverage that measures applications at the end-user level. Unfortunately, not everyone is thinking that far ahead. Applications that should be “Wow”, in theory, may end up producing little more than a murmur of disappointment in the real world.

So, for the sake of our long-term prospects, let’s stop this nonsense about how one technology trounces another. Important people, the end users, simply do not care.  WiMAX, LTE and HSPA+ will all be widely deployed. As an industry, our energy needs to be focused on delivering services and applications that exceed the customer expectations.  Rather than fighting, we should be learning from each other’s experiences.  If we do that, our customers will reward us with growing demand. If we all get sustained growth, then don’t we all win..?

Source: http://www.telecoms.com/11695/wimax-vs-lte-vs-hspa-who-cares-who-wins/

SMS – Assimilation is inevitable, Resistance is Futile!

2 Jan

Short Message Service or SMS for short, one of the corner stones of mobile services, just turned 20 years old in 2012.

Talk about “Live Fast, Die Young” and the chances are that you are talking about SMS!

The demise of SMS has already been heralded … Mobile operators rightfully are shedding tears of the (taken-for-granted?) decline of the most profitable 140 Bytes there ever was and possible ever will be.

Before we completely kill off SMS, let’s have a brief look at

SMS2012

The average SMS user (across the world) consumed 136 SMS (ca. 19kByte) per month and paid 4.6 US$-cent per SMS and 2.6 US$ per month. Of course this is a worldwide average and should not be over interpreted. For example in the Philippines an average SMS user consumes 650+ SMS per month pays 0.258 US$-cent per SMS or 1.17 $ per month.The other extreme end of the SMS usage distribution we find in Cameroon with 4.6 SMS per month paying 8.19 US$-cent per SMS.

We have all seen the headlines throughout 2012 (and better part of 2011) of SMS Dying, SMS Disaster, SMS usage dropping and revenues being annihilated by OTT applications offering messaging for free, etcetcetc… & blablabla … “Mobile Operators almost clueless and definitely blameless of the SMS challenges” … Right? … hmmmm maybe not so fast!

All major market regions (i.e., WEU, CEE, NA, MEA, APAC, LA) have experienced a substantial slow down of SMS revenues in 2011 and 2012. A trend that is expected to continue and accelerate with mobile operators push for mobile broadband. Last but not least SMS volumes have slowed down as well (though less severe than the revenue slow down) as signalling-based short messaging service assimilates to IP-based messaging via mobile applications.

Irrespective of all the drama! SMS phase-out is obvious (and has been for many years) … with the introduction of LTE, SMS will be retired.

Resistance is (as the Borg’s would say) Futile!

It should be clear that the phase out of SMS does Absolutely Not mean that messaging is dead or in decline. Far far from it!

Messaging is Stronger than Ever and just got so many more communication channels beyond the signalling network of our legacy 2G & 3G networks.

Its however important to understand how long the assimilation of SMS will take and what drivers impact the speed of the SMS assimilation. From an operator strategic perspective such considerations will provide insights into how quickly they will need to replace SMS Legacy Revenues with proportional Data Revenues or suffer increasingly on both Top and Bottom line.

SMS2012 AND ITS GROWTH DYNAMICS

So lets just have a look at the numbers (with the cautionary note that some care needs to be taken with exchange rate effects between US Dollar and Local Currencies across the various markets being wrapped up in a regional and a world view. Further, due to the structure of bundling propositions, product-based revenues such as SMS Revenues, can be and often are somewhat uncertain depending on the sophistication of a given market):

2012 is expected worldwide to deliver more than 100 billion US Dollars in SMS revenues on more than 7 trillion revenue generating SMS.

The 100 Billion US Dollars is ca. 10% of total worldwide mobile turnover. This is not much different from the 3 years prior and 1+ percentage-point up compared to 2008. Data revenues excluding SMS is expected in 2012 to be beyond 350 Billion US Dollar or 3.5 times that of SMS Revenues or 30+% of total worldwide mobile turnover (5 years ago this was 20% and ca. 2+ times SMS Revenues).

SMS growth has slowed down over the last 5 years. Last 5 years SMS revenues CAGR was ca. 7% (worldwide). Between 2011 and 2012 SMS revenue growth is expected to be no more than 3%. Western Europe and Central Eastern Europe are both expected to generate less SMS revenues in 2012 than in 2011. SMS Volume grew with more than 20% per annum the last 5 years but generated SMS in 2012 is not expected to more than 10% higher than 2012.

For the ones who like to compare SMS to Data Consumption (and please safe us from ludicrous claims of the benefits of satellites and other ideas out of too many visits to Dutch Coffee shops)

2012 SMS Volume corresponds to 2.7 Terra Byte of daily data (not a lot! Really it is not!)

Don’t be terrible exited about this number! It is like Nano-Dust compared to the total mobile data volume generated worldwide.

The monthly Byte equivalent of SMS consumption is no more than 20 kilo Byte per individual mobile user in Western Europe.

Let us have a look at how this distributes across the world broken down in Western Europe (WEU), Central Eastern Europe (CEE), North America (NA), Asia Pacific (APAC), Latin America (LA) and Middle East & Africa (MEA):

sms_revenues_2012 sms_volume_2012

From the above chart we see that

Western Europe takes almost 30% of total worldwide SMS revenues but its share of total SMS generated is less than 10%.

And to some extend also explains why Western Europe might be more exposed to SMS phase out than some other markets. We have already seen the evidence of Western Europe sensitivity to SMS revenues back in 2011, a trend that will spread in many more markets in 2012 and lead to an overall negative SMS revenue story of Western Europe in 2012. We will see that within some of the other regions there are countries that substantially more exposed to SMS phase-out than others in terms of SMS share of total mobile turnover.

sms_pricing sms_per_individual

In Western Europe a consumer would  for an SMS pay more than 7 times the price compared to a consumer in North America (i.e., Canada or USA). It is quiet clear that Western Europe has been very successful in charging for SMS compared to any other market in the World. An consumers have gladly paid the price (well I assume so;-).

SMS Revenues in Western Europe are proportionally much more important in Western Europe than in other regions (maybe with the exception of Latin America).

In 2012 17% of Total Western Europe Mobile Turnover is expected to come from SMS Revenues (was ca. 13% in 2008).

WHAT DRIVES SMS GROWTH?

It is interesting to ask what drives SMS behaviour across various markets and countries.

Prior to reasonable good quality 3G networks and as importantly prior to the emergence of the Smartphone the SMS usage dynamics between different markets could easily be explained by relative few drivers, such as

(1) Price decline year on year (the higher decline the faster does SMS per user grow, though rate and impact will depend on Smartphone penetration & 3G quality of coverage).

(2) Price of an SMS relative to the price of a Minute (the lower the more SMS per User, in many countries there is a clear arbitrage in sending an SMS versus making a call which on average last between 60 – 120 seconds).

(3) Prepaid to Contract ratios (higher prepaid ratios tend to result in fewer SMS, though this relationship is not per se very strong).

(4) SMS ARPU to GDP (or average income if available) (The lower the higher higher the usage tend to be).

(5) 2G penetration/adaptation and

(6) literacy ratios (particular important in emerging markets. the lower the literacy rate is the lower the amount of SMS per user tend to be).

Finer detailed models can be build with many more parameters. However, the 6 given here will provide a very decent worldview of SMS dynamics (i.e., amount and growth) across countries and cultures. So for mature markets we really talk about a time before 2009 – 2010 where Smartphone penetration started to approach or exceed 20% – 30% (beyond which the model becomes a bit more complex).

In markets where the Smartphone penetration is beyond 30% and 3G networks has reached a certain coverage quality level the models describing SMS usage and growth changes to include Smartphone Penetration and to a lesser degree 3G Uptake (not Smartphone penetration and 3G uptake are not independent parameters and as such one or the other often suffice from a modelling perspective).

Looking SMS usage and growth dynamics after 2008, I have found high quality statistical and descriptive models for SMS growth using the following parameters;

(a) SMS Price Decline.

(b) SMS price to MoU Price.

(c) Prepaid percentage.

(d) Smartphone penetration (Smartphone penetration has a negative impact on SMS growth and usage – unsurprisingly!)

(e) SMS ARPU to GDP

(f) 3G penetration/uptake (Higher the 3G penetration combined with very good coverage has a negative impact on SMS growth and usage. Less important though than Smartphone penetration).

It should be noted that each of these parameters are varying with time and there for in extracting those from a comprehensive dataset time variation should be considered in order to produce a high quality descriptive model for SMS usage and growth.

If a Market and its Mobile Operators would like to protect their SMS revenues or at least slow down the assimilation of SMS, the mobile operators clearly need to understand whether pushing Smartphones and Mobile Data can make up for the decline in SMS revenues that is bound to happen with the hard push of mobile broadband devices and services.

EXPOSURE TO LOSS OF SMS REVENUE – A MARKET BY MARKET VIEW!

As we have already seen and discussed it is not surprising that SMS is declining or stagnating. At least within its present form and business model. Mobile Broadband, the Smartphone and its many applications have created a multi-verse of alternatives to the SMS. Where in the past SMS was a clear convenience and often a much cheaper alternative to an equivalent voice call, today SMS has become in-convenient and not per se a cost-efficient alternative to Voice and certainly not when compared with IP-based messaging via a given data plan.

exposure_to_SMS_decline

74 countries (or markets) have been analysed for their exposure to SMS decline in terms of the share of SMS Revenues out of the Total Mobile Turnover. 4 categories have been identified (1) Very high risk >20%, (2) High risk for 10% – 20%, (3) Medium risk for 5% – 10% and (4) Lower risk when the SMS Revenues are below 5% of total mobile turnover.

As Mobile operators push hard for mobile broadband and inevitably increases rapidly the Smartphone penetration, SMS will decline. In the “end-game” of LTE, SMS has been altogether phased out.

Based on 2012 expectations lets look at the risk exposure that SMS phase-out brings in a market by market out-look;

We see from the above analysis that 9 markets (out of a total 74 analyzed), with Philippines taking the pole position, are having what could be characterized as a very high exposure to SMS Decline. The UK market, with more than 30% of revenues tied up in SMS, have aggressively pushed for mobile broadband and LTE. It will be very interesting to follow how UK operators will mitigate the exposure to SMS decline as LTE is penetrating the market.  We will see whether LTE (and other mobile broadband propositions) can make up for the SMS decline.

More than 40 markets have an SMS revenue dependency of more than 10% of total mobile turnover and thus do have a substantial exposure to SMS decline that needs to be mitigated by changes to the messaging business model.

Mobile operators around the world still need to crack this SMS assimilation challenge … a good starting point would be to stop blaming OTT for all the evils and instead either manage their mobile broadband push and/or start changing their SMS business model to an IP-messaging business model.

IS THERE A MARGIN EXPOSURE BEYOND LOSS OF SMS REVENUES?

There is no doubt that SMS is a high-margin service, if not the highest, for The Mobile Industry.

A small de-tour into the price for SMS and the comparison with the price of mobile data!

The Basic: an SMS is 140 Bytes and max 160 characters.

On average (worldwide) an SMS user pays (i.e., in 2012) ca. 4.615 US$-cent per short message.

A Mega-Byte of data is equivalent to 7,490 SMSs which would have a “value” of ca. 345 US Dollars.

Expensive?

Yes! It would be if that was the price a user would pay for mobile broadband data (particular for average consumptions of 100 Mega Bytes per month of Smartphone consumption) …

However, remember that an average user (worldwide) consumes no more than 20 kilo Byte per Month.

One Mega-Byte of SMS would supposedly last for more than 50 month or more than 4 years.

This is just to illustrate the silliness of getting into SMS value comparison with mobile data.

A Byte is not just a Byte but depends what that Byte caries!

Its quiet clear that an SMS equivalent IP-based messaging does not pose much of a challenge to a mobile broadband network being it either HSPA-based or LTE-based. To some extend IP-based messaging (as long as its equivalent to 140 Bytes) should be able to be delivered at better or similar margin as in a legacy based 2G mobile network.

Thus, in my opinion a 140 Byte message should not cost more to deliver in an LTE or HSPA based network. In fact due to better spectral efficiency and at equivalent service levels, the cost of delivering 140 Bytes in LTE or HSPA should be a lot less than in GSM (or CS-3G).

However, if the mobile operators are not able to adapt their messaging business models to recover the SMS revenues (which with the margin argument above might not be $ to $ recovery but could be less) at risk of being lost to the assimilation process of pushing mobile data … well then substantial margin decline will be experienced.

Operators in the danger zone of SMS revenue exposure, and thus with the SMS revenue share exceeding 10% of the total mobile turnover, should urgently start strategizing on how they can control the SMS assimilation process without substantial financial loss to their operations.

ACKNOWLEDGEMENT

I have made extensive use of historical and actual data from Pyramid Research country data bases. Wherever possible this data has been cross checked with other sources. Pyramid Research have some of the best and most detailed mobile technology projections that would satisfy most data savvy analysts. The very extensive data analysis on Pyramid Research data sets are my own and any short falls in the analysis clearly should only be attributed to myself.

Source: http://techneconomyblog.com/2013/01/01/sms-assimilation-is-inevitable-and-resistance-is-futile/

Wi-Fi can help LTE meet mobile data surge

5 Oct

Wi-Fi offloading helps network operators cope with rapidly increasing data traffic from mobile devices. 


Smart devices make it convenient to access the Internet from virtually anywhere because the cellular network can deliver content over broadband links such as HSPA+ and LTE at speeds similar to those in the home or office.
Many mobile users are streaming music and video or sending e-mails with large attachments, the accumulated data traffic can easily approach the capacity of the cellular network. There have already been many instances in which required capacity has exceeded available capacity, resulting in websites that are slow to load and video that is almost impossible to view.
The percentages of web browsing, e-mail, music and video over mobile links is set to explode in the next few years.
Although there are some true “on-the-go” uses of data-intensive applications, most mobile subscribers are stationary when they watch a video, listen to music or browse websites. Places of highest traffic density – hotspots – are found indoors in urban areas where users tend to be stationary and do not necessarily have to depend on the cellular network because other broadband technologies are available.

Smart offloading and the architecture

In order to cope with increasing data traffic areas, mobile network operators (MNOs) can add more cells or install more advanced base stations. Both strategies require a great deal of planning and are expensive.
These costs can be minimized, however, since all smartphones and tablets have integrated Wi-Fi. Thanks to the relatively high data rates and the availability at home and public places, people tend to use Wi-Fi often. In fact, about 70% of global smartphone-originated traffic already goes over Wi-Fi, according to a recent study.
Because the subscribers consuming high data volumes usually have an unlimited data plan (or a “flat-rate plan”) MNOs can derive significant benefit from passive offloading.
WLAN has the benefits of small cells such as home use and hotspots. It does not interfere with the frequency bands of macro-cells. The 5GHz band has a bandwidth of 500-800 MHz available for WLAN.
Therefore, MNOs perceive WLAN as a financially attractive complement to their cellular network. As a result, LTE networks are being deployed for area coverage with WLAN networks for capacity in high traffic areas.
Smart offloading is the controlled data traffic offload from the cellular network to Wi-Fi (and in the reverse direction). It should happen seamlessly so the user does not need to search for an appropriate network and enter user credentials such as a password.
Ideally, the MNO can control the data offload dynamically and selectively based on the location, time of day, network loading, user’s subscription and other factors. For the actual offloading, all the required technologies are available and will be discussed in the following sections.

Figure 1: an example of an offload scenario.

As the smartphone moves from a home or office through the city, it automatically hands over to Wi-Fi hotspots where available.

3GPP architecture

As a result of studies carried out during the development of the system architecture evolution (SAE), support for non-3GPP access systems such as WiMAXTM and WLAN was added and interfaces for interworking between these systems were defined.

Figure 2: Trusted non-3GPP access to the EPC


Trusted and untrusted connection requests are treated differently for non-3GPP access. Figure 2 shows the main network entities for the trusted access, e.g. if the WLAN network uses secure transmissions.
The untrusted access is routed from the Packet Data Network Gateway (PDN GW) over the S2b interface to an evolved packet data gateway (ePDG) that acts as a filter and firewall, then over the SWn interface to the WLAN. In that case, it is required that a device connected over WLAN sets up an IPsec tunnel to the ePDG.
IEEE 802.11u and Wi-Fi Hotspot 2.0 Connecting to a WLAN access point (AP) generally requires the user and device to select the desired AP and provide appropriate credentials for authentication. The IEEE 802.11 standardization group has released an amendment (IEEE 802.11u) in 2011 that includes media access control (MAC) enhancements that automate and speed up the process of joining a network. It basically extends the beacon that APs broadcast, and adds protocols such as the access network query protocol (ANQP).
The Wi-Fi Alliance defines a set of functions from the IEEE 802.11 WLAN standards and its amendments that are guaranteed to work on Wi-Fi Certified™ products. In 2012, the Alliance also released the Wi-Fi Hotspot 2.0 specification, which defines the required capabilities for APs, mobile devices, and the operators.
Several protocols and functions are required for seamless data traffic offload. These range from the possibility of controlling the actual offload to an authenticated secure link to the IP flow mobility for session continuity.

Access network discovery and selection function

Mobile phones today typically have multi-mode chipsets that support multiple radio access technologies such as GSM and WCDMA. It won’t be long before many phones also have LTE, WLAN and perhaps TD-SCDMA. The access network discovery and selection function (ANDSF) provides the user equipment (UE) with policies on intersystem mobility and routing, and assists in access network discovery. It offers a way for MNOs to dynamically control and define preferences — that is, how, where, when, and for what purpose a device can use a certain radio access technology. It can be used for both inter-technology and intra-technology access network selection but it should not influence the network selection and reselection procedures as already specified in 3GPP.
ANDSF was first introduced with 3GPP Rel. 8 (TS 24.312). The ANDSF server is an entity in the Evolved Packet Core (EPC) that communicates with the client UE over the S14 interface (TS 23.402) which is realized above IP level. By sending an open mobile alliance (OMA) device management (DM) message, the UE gets the policies. These are described with managed objects (MOs) and are defined in XML.

Generic Advertisement Service and the Access Network Query Protocol

If a Wi-Fi device has found an AP and is allowed to connect, it is still not certain that this particular AP is authentic. In order to discover additional details, a mechanism called generic advertisement service (GAS) was introduced. This allows a device to query information from the AP.

Figure 3: IEEE 802.11u/Hotspot 2.0 Access Network Query Protocol
In Figure 3, an AP that is compliant with Wi-Fi Hotspot 2.0 begins the interaction by sending beacons that are extended with more information. Using the access network query protocol (ANQP), a device sends a “GAS initial request” that inquires which roaming consortium it belongs to, which network authentication to use, a NAI realm list, or even the location and WAN metrics. The device will receive the “GAS initial response” with these information elements and can then decide whether or not to connect. If the AP is already very busy, has a slow connection to the Internet, or belongs to a provider that charges excessive rates, a device may keep looking for another AP. When it decides to connect, it already knows how to authenticate.

Authentication

Wi-Fi networks are considered secure if they use the appropriate authentication method. The IEEE 802.1X standard describes such a method where the authenticator checks the supplicant’s credentials with an authentication server (RADIUS). It uses the extensible authentication protocol (EAP).
If a device automatically discovers a WLAN hotspot belonging to the subscriber’s MNO, it needs to authenticate automatically. For the user it is only seamless if he/she does not need to enter any username and password. For that purpose there are EAP methods that make use of the available SIM/USIM in the device. The MNO’s hotspot can verify the UE’s identity with the MNO’s Home Subscriber Server (HSS), and in that case EAP-SIM, EAP-AKA or EAP-AKA’ can be used. Devices without SIM/USIM will need to use either EAP-TLS with a certificate or EAP-TTLS with MSCHAPv2 if a username and password can be supplied.

Flow Mobility

To support a seamless handover, some sort of IP flow mobility must be implemented. Client-based mobility is one option. This requires that the device runs a special stack that can handle changes in the connection. The Dual Stack for Mobile IPv6 (DSMIPv6, IETF RFC 5555) is an example that enables session continuity for IPv4 and IPv6 packets.
On the other hand, there is network based mobility that does not require changes in the devices. Proxy Mobile IPv6 (PMIPv6, IETF RFC 5213) is an example of that. For full flow mobility across all interfaces, however, additional extensions are required. On the 3GPP side, protocols such as local IP access (LIPA) allow the direct routing of traffic between devices in the same cell, and selected IP traffic offload (SIPTO) for routing the Internet traffic directly. These protocols are standardized in 3GPP TS 23.829. A newer protocol developed for Rel.10 and onward is IP flow mobility (IFOM, 3GPP TS 23.261).
The rapid increase of mobile data traffic demands an infrastructure that can deliver huge amounts of data less expensively than current cellular technologies. WLAN is a widely used and accepted technology. With the help of enhancements such as IEEE 802.11u and Wi-Fi Hotspot 2.0 as well as non-3GPP access standardized by 3GPP, MNOs can use these technologies to complement each other.
In fact, many mechanisms and protocols already exist and operators such as Swisscom, KDDI and MetroPCS have been using Wi-Fi offloading for quite some time. But the variety of options must be reduced to one or a few options for a wide-spread and interoperable success. Future network upgrades and smartphone generations will continuously enhance the experience.
At the same time, new extensive and complex tests need to be performed to ensure the dynamic provisioning and correct interpretation of policies.

Source: http://www.electronicsweekly.com/Articles/04/10/2012/54699/wi-fi-can-help-lte-meet-mobile-data-surge.htm – Adrian Schumacher – Thursday 04 October 2012

Small Cells Herald New Infrastructure Model

18 Aug

(Microwaves & RF Via Acquire Media NewsEdge) The same story is being told in many places: Now that high-bandwidth applications have been adopted en masse by cellular-phone and tablet users, wireless system operators are running out of capacity. As they face this shortage, consumers are rapidly growing in number and adopting more data-intensive applications. As a result, there has been much debate and hand-wringing over how sufficient capacity can be provided. The answer is a new approach to cellular infrastructure the heterogeneous network (HetNet). Rather than just beef up the existing cell sites and add new ones where possible, new network rollouts will supplement large base-station coverage with smaller cells. Be they residential, enterprise, or metro-focused, these smaller cells will bring the quality of service of large cells inside buildings while filling network “holes,” where high speeds and high bandwidth would not otherwise have been available.

This graphic, courtesy of the Small Cell Forum, shows how small cells will extend the connectivity of various networks while increasing available capacity.

Smaller cells have been discussed as a potential solution for years. Now, their time has truly come. Rupert Baines, Vice President of Marketing at Mindspeed (www.mindspeed.com), states, “First operators are placing production orders now. We announced SK Telecom and KT (both in Korea) are placing production orders for Long-Term-Evolution (LTE) small cells for deployment this year. AT&T, Vodafone, and Verizon Wireless have all said they will deploy LTE small cells starting next year.” Sprint is now commanding one of the largest rollouts. According to Informa Telecoms & Media (www.informatm.com), the carrier has announced the rapid acceleration of its femtocell deployment to a total of 600,000 units up from 250,000 units in 2011. It also is increasing its metro-area coverage by deploying Alcatel-Lucent’s (www.alcatel-lucent.com) lightRadio metro cells. These mini-base-stations can be deployed indoors or outdoors for example, on lamp posts or street signs or inside shopping malls or stadiums.

Such efforts underscore Sprint’s current work on an all-new HetNet, which it has named Network Vision. This network will include the deployment of an improved third-generation (3G) network as well as fourth-generation (4G) LTE. Small-cell technology complements the Network Vision plan by providing lower-cost infrastructure to expand coverage and capacity in targeted high-usage areas.

Sprint’s efforts provide good examples of both a HetNet and the trends in small-cell adoption. According to the most recent quarterly small-cell market status report from Informa, operator interest in public-access small cells is growing while the femtocell (residential-small-cell) market is making progress. Small cells will outnumber all macrocells globally during the fourth quarter of this year. Femtocells constitute over 80% of the 4.6 million small cells currently deployed globally across the 41 operator deployments (compared to 5.6 million conventional macrocells). By the close of 2012, Informa predicts, there will be 6.4 million small cells. Of those, 86% will be femtocells. Thus, femtocells alone will outnumber all macrocells in the first quarter of 2013.

The mission of small cells is tri-fold: to add capacity, extend coverage, and offload traffic from larger cells. A recent study by the Small Cell Forum (formerly the Femto Forum; http://www.smallcellforum.org) found that even a relatively conservative small-cell deployment with four devices per macrocell would increase typical data rates by over 300% and offload 56% of data. However, Informa points out that public-access small cells also could positively impact rural and developing markets. Recently, African operator RascomStar-QAF announced that it is running trials using satellite backhaul in the Congo. Ongoing trials also are being conducted by Vodafone UK and a rural deployment by SoftBank in Japan.

Small Cells, Big Challenges Like all things wireless, small cells have had to prove their performance in the face of issues like interference and security concerns. With real-world deployment just beginning in large numbers, Baines foresees two issues creating the most challenges. The first is to make deployment and provisioning inexpensive and easy. The second challenge is how to effectively accomplish backhaul. Baines poses the question: “Do you use fiber to the lamp-post Wireless WiFi E-band ” Some of these approaches complicate deployment and add to the expense of the network.

When the goal is to reliably backhaul potentially thousands of small-cell nodes, most traditional approaches become prohibitively expensive. As a result, many novel approaches to backhaul are currently being tried, tested, and implemented. Take Telefonica UK, which effectively eliminates the backhaul problem by meshing traffic over 5-GHz WiFi mesh links between nodes using Ruckus Wireless’ (www.ruckuswireless.com) Smart Mesh technology.

Smart Mesh’s success has shown that it is possible to deliver reliable backhaul for licensed cellular and unlicensed WiFi traffic in both line-of-sight and non-line-of-sight environments. Smart Mesh uses advanced self-organizing-network (SON) principles with Ruckus-patented adaptive antenna arrays (BeamFlex) and predictive channel-management techniques (ChannelFly). Together, these technologies create resilient, fast, WiFi mesh-backbone links between nodes. Those links automatically adapt to changes in environmental conditions.

The result is yet another form of a HetNet. Ruckus’ SmartCell 8800 modular multi-radio system integrates patented adaptive-antenna-array technology, which supports multiple licensed and unlicensed radio technologies. Among these technologies are high-speed, dual-band IEEE 802.11n WiFi, small-cell 3G/4G radios, and 5-GHz wireless backhaul. Operators can co-locate and combine LTE small cells with WiFi access points, sharing site-lease agreements and backhaul.

These new network models translate into opportunities for many manufacturers. For example, the base-station transceiver market, which has been experiencing a rather significant slowdown for the past year and a half, is expected to stabilize with the rollout of LTE. According to a report by Mobile Experts (www.mobile-experts.net), “Semiconductors for Macro Transceivers and RRH,” the number of base-station transceivers will grow to more than 17 million per year by 2017. Increasing bandwidth requirements, multiple-input multiple-output (MIMO) architectures, and carrier aggregation will drive growth in key semiconductor components. The devices that are expected to benefit from this growth include analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and system-on-a-chip (SoC) multifunction components.

Paul Hart, RF Systems Engineering Manager at Freescale (www.freescale.com), notes that integrated solutions in particular are proving popular. “Cellular base stations require many discrete components that, when sought out separately, can be a cumbersome and expensive task for manufacturers,” he explains. “Because of all the parts associated with building out a small-cell network, OEMS are looking for solutions that combine all components from an RF radio board to the IC to the SoC.” To make the jump from 3G to next-generation 4G and LTE-A networks, Hart states that manufacturers also are asking for comprehensive, scalable solutions that support a range of air interfaces. “If the support for one standard is proven and the ability to scale up and over to next-generation standards is there, the development time will be reduced and the design flexibility will be improved to ensurea quicker response to network demands,” he explains.

To provide such flexibility and integration for small-office/home-office (SOHO) applications, for example, Freescale offers a baseband-to-antenna reference design for multi-standard small-cell base stations (Fig. 2). This printed-circuit-board (PCB) solution is partially powered by two gallium-arsenide (GaAs) monolithic microwave integrated circuits (MMICs) the MMZ25332B and MMZ09312B amplifiers. Two of Freescale’s low-noise amplifiers (LNAs) the MML09211H and MML20211H are included on the PCB as well. These devices are specifically designed for the receiver sensitivity requirements of femtocells. The baseband-to-antenna reference design combines the QorIQ Qonverge BSC9131 base-station SoC, which supports a range of air interfaces, with Freescale RF radio boards. The multi-protocol solution scales a range of cellular bands to ease the transition from 3G to 4G LTE.

By combining RF products with an SoC, this reference design offers an integrated solution for small-cell base-station markets as they transition from 3G to 4G.

Despite the success of such novel approaches, the interior of buildings still poses a tricky challenge for wireless service providers. Traditionally, distributed-antenna-systems (DASs) improved cellular coverage by ensuring that radio signals reached all areas although not always at increased data rates. In contrast, small cells typically serve an area around a basestation (perhaps 100 m in a city and as much as 2 km in a rural area), which is suitable for providing sufficient capacity in busy train stations or congested commercial intersections. Yet they are less suited to the complex structure of corridors in a large building, where coverage shadows or black spots are common.

In hopes of solving this coverage dilemma, Mindspeed has included support for smart-DAS technology in its SoCs for small-cell products specifically, the Transcede PC333 and PC3032 SoCs for HSPA+ products. As a result, those SoCs can now handle the delay characteristics of the long coaxial networks and specific antenna technology associated with DAS. DAS also will be supported on the firm’s dual-mode (HSPA+ and LTE) T2200 and T3300.

To provide both capacity and coverage in challenging indoor environments, DAS support is being integrated into some of this product family’s small-cell SoCs.

Beyond range and capacity needs, wireless networks must provide a seamless user experience as users move among these different coverage points. Thus, the synchronization of the small cells with macro base stations is critical (Fig. 4). Among the most recent efforts from Symmetricom (www.symmetricom.com) are embedded timing and synchronization solutions for both enterprise and residential small cells. 4. Here, synchronization requirements are shown according to small-cell type. (Graphic courtesy of Symmetricom) The SCr (residential) and SCe (enterprise) SoftClocks support multiple timing protocols including IEEE 1588 (PTP), network time protocol (NTP), and softGPS. By leveraging existing hardware resources, this software synchronization solution supports a variety of backhaul types and associated requirements. Small-cell designers can therefore execute a single base design with options to integrate one or more synchronization protocols for deployment in varied network topologies.

What’s Next For Small Cells Small cells suffered a bit from the wireless “hype” cycle in that they were discussed long before they were deployed. In this case, however, the delay seemed to allow firms to resolve a lot of issues and provide better groundwork for 4G transitions. Like the few examples cited here, this vast market is benefiting from the fact that reliable and proven solutions are availableand the numbers prove it.

Yet the work is far from done. According to Scott Aylor, Director and GM for Freescale’s Wireless Access Division, “The next-generation LTE and LTE-A network will require that cellular base stations from small cells to the macro level offer significant advancements in computational capacity for increasing network demands. Additionally, there will be a need for more intelligent connectivity and routing via next-generation communications processors, which work with an integrative software ecosystem to enable optimized throughput and compatibility across the heterogeneous network.” Mindspeed’s Baines is seeing hints of disruptive changes on the horizon. “In many areas of technology,” he explains, “we see markets explode as they shift from in-house developments on generic devices to SoCs with reference designs and complete solutions. We saw it in DSL, WiFi, and even in computers when it stopped being mainframes running custom software on custom silicon to PCs and Wintel.

“I see a similar transition here,” Baines continues. “Macrocells with custom software developed in house by an OEM are converting to small cells developed using SoC and software a reference design from a chip vendor that delivers a complete solution. Once again, this will be disruptive change…I met one operator who is wondering very seriously, ‘If I have small cells, why do I need macro cells ’ just like a business owner might say, ‘If I have PCs, why do I need a mainframe ’” Eventually, big base stations could become a thing of the past replaced by their smaller, more numerous descendants.

Source: http://technews.tmcnet.com/news/2012/08/17/6517124.htm# [August 17, 2012]

%d bloggers like this: