Tag Archives: AMQP

IoT: New Paradigm for Connected Government

9 May

The Internet of Things (IoT) is an uninterrupted connected network of embedded objects/ devices with identifiers without any human intervention using standard and communication protocol.  It provides encryption, authorization and identification with different device protocols like MQTT, STOMP or AMQP to securely move data from one network to another. IoT in connected Government helps to deliver better citizen services and provides transparency. It improves the employee productivity and cost savings. It helps in delivering contextual and personalized service to citizens and enhances the security and improves the quality of life. With secure and accessible information government business makes more efficient, data driven, changing the lives of citizens for the better. IoT focused Connected Government solution helps in rapidly developing preventive and predictive analytics. It also helps in optimizing the business processes and prebuilt integrations across multiple departmental applications. In summary, this opens up the new opportunities for government to share information, innovate, make more informed decisions and extend the scope of machine and human interaction.

Introduction
The Internet of Things (IoT) is a seamless connected system of embedded sensors/devices in which communication is done using standard and interoperable communication protocols without human intervention.

The vision of any Connected Government in the digital era is “To develop connected and intelligent IoT based systems to contribute to government’s economy, improving citizen satisfaction, safe society, environment sustainability, city management and global need.”

IoT has data feeds from various sources like cameras, weather and environmental sensors, traffic signals, parking zones, shared video surveillance service.  The processing of this data leads to better government – IoT agency coordination and the development of better services to citizens.

Market Research predicts that, by 2020, up to 30 billion devices with unique IP addresses are connected to the Internet [1]. Also, “Internet of Everything” has an economic impact of more than $14 trillion by 2020 [2].  By 2020, the “Internet of Things” is powered by a trillion sensors [3]. In 2019, the “Internet of Things” device market is double the size of the smartphone, PC, tablet, connected car, and the wearable market combined [4]. By 2020, component costs will have to come down to the point that connectivity will become a standard feature even for processors costing less than $1 [5].

This article articulates the drivers for connected government using IoT and its objectives. It also describes various scenarios in which IoT used across departments in connected government.

IoT Challenges Today
The trend in government seems to be IoT on an agency-by-agency basis leading to different policies, strategies, standards and subsequent analysis and use of data. There are number of challenges preventing the adoption of IoT in governments. The main challenges are:

  • Complexity: Lack of funding, skills and usage of digital technologies, culture and strategic leadership commitment are the challenges today.
  • Data Management: In Government, there is a need for managing huge volumes of data related to government departments, citizens, land and GIS. This data needs to be encrypted and secured. To maintain the data privacy and data integrity is a big challenge.
  • Connectivity: IoT devices require good network connectivity to deliver the data payload and continuous streaming of unstructured data. Example being the Patient medical records, rainfall reports, disaster information etc.  Having a network connectivity continuously is a challenge.
  • Security: Moving the information back and forth between departments, citizens and third parties in a secure mode is the basic requirement in Government as IoT introduces new risks and vulnerabilities. This leaves users exposed to various kinds of threats.
  • Interoperability: This requires not only the systems be networked together, but also that data from each system has to be interoperable. Majority of the cases, IoT is fragmented and lacks in interoperability due to different OEMs, OS, Versions, Connecters and Protocols.
  • Risk and Privacy: Devices sometimes gather and provides personal data without the user’s active participation or approval. Sometimes gathers very private information about individuals based on indirect interactions violating the privacy policies.
  • Integration: Need to design an integration platform that can connect any application, service, data or device with the government eco system. Having a solution that comprises of an integrated “all-in-one” platform which provides the device connectivity, event analytics, and enterprise connectivity capabilities is a big challenge.
  • Regulatory and Compliance – Adoption of regulations by an IoT agencies is a challenge.
  • Governance: One of the major concerns across government agencies is the lack of big picture or an integrated view of the IoT implementation. It has been pushed by various departments in a silo-ed fashion.  Also, government leaders lack a complete understanding of IoT technology and its potential benefits.

IoT: Drivers for Connected Government
IoT can increase value by both collecting better information about how effectively government servants, programs, and policies are addressing challenges as well as helping government to deliver citizen-centric services based on real-time and situation-specific conditions. The various stakeholders that are leveraging IoT in connected government are depicted below,

 

Information Flow in an IoT Scenario
The Information flow in Government using IoT has five stages (5C) : Collection, Communication, Consolidation, Conclusion and Choice.

  1. Collection: Sensors/devices collect data on the physical environment-for example, measuring things such as air temperature, location, or device status. Sensors passively measure or capture information with no human intervention.
  2. Communication: Devices share the information with other devices or with a centralized platform. Data is seamlessly transmitted among objects or from objects to a central repository.
  3. Consolidation: The information from multiple sources are captured and combined at one point. Data is aggregated as a devices communicate with each other. Rules determine the quality and importance of data standards.
  4. Conclusion: Analytical tools help detect patterns that signal a need for action, or anomalies that require further investigation.
  5. Choice: Insights derived from analysis either initiate an action or frame a choice for the user. Real time signals make the insights actionable, either presenting choices without emotional bias or directly initiating the action.

Figure 2: IoT Information Flow

Role of IoT in Connected Government
The following section highlights the various government domains and typical use cases in the connected government.

Figure 3: IoT Usage in Connected Government

a. Health
IoT-based applications/systems of the healthcare enhance the traditional technology used today. These devices helps in increasing the accuracy of the medical data that was collected from large set of devices connected to various applications and systems. It also helps in gathering data to improve the precision of medical care which is delivered through sophisticated integrated healthcare systems.

IoT devices give direct, 24/7 X 365 access to the patient in a less intrusive way than other options. IoT based analytics and automation allows the providers to access the patient reports prior to their arrival to hospital. It improves responsiveness in emergency healthcare.

IoT-driven systems are used for continuous monitoring of patients status.  These monitoring systems employ sensors to collect physiological information that is analyzed and stored on the cloud. This information is accessed by Doctors for further analysis and review. This way, it provides continuous automated flow of information. It helps in improving the quality of care through altering system.

Patient’s health data is captured using various sensors and are analyzed and sent to the medical professional for proper medical assistance remotely.

b. Education
IoT customizes and enhances education by allowing optimization of all content and forms of delivery. It reduces costs and labor of education through automation of common tasks outside of the actual education process.

IoT technology improves the quality of education, professional development, and facility management.  The key areas in which IoT helps are,

  • Student Tracking, IoT facilitates the customization of education to give every student access to what they need. Each student can control experience and participate in instructional design. The student utilizes the system, and performance data primarily shapes their design. This delivers highly effective education while reducing costs.
  • Instructor Tracking, IoT provides instructors with easy access to powerful educational tools. Educators can use IoT to perform as a one-on-one instructor providing specific instructional designs for each student.
  • Facility monitoring and maintenance, The application of technology improves the professional development of educators
  • Data from other facilities, IoT also enhances the knowledge base used to devise education standards and practices. IoT introduces large high quality, real-world datasets into the foundation of educational design.

c. Construction
IoT enabled devices/sensors are used for automatic monitoring of public sector buildings and facilities or large infrastructure. They are used for managing the energy levels of air conditioning, electricity usage. Examples being lights or air conditioners ON in empty rooms results into revenue loss.

d. Transport
IoT’s can be used across transport systems such as traffic control, parking etc. They provide improved communication, control and data distribution.

The IoT based sensor information obtained from street cameras, motion sensors and officers on patrol are used to evaluate the traffic patterns of the crowded areas. Commuters will be informed of the best possible routes to take, using information from real-time traffic sensor data, to avoid being stuck in traffic jams.

e. Smart City
IoT simplifies examining various factors such as population growth, zoning, mapping, water supply, transportation patterns, food supply, social services, and land use. It supports cities through its implementation in major services and infrastructure such as transportation and healthcare. It also manages other areas like water control, waste management, and emergency management. Its real-time and detailed information facilitate prompt decisions in emergency management.  IoT can automate motor vehicle services for testing, permits, and licensing.

f. Power
IoT simplifies the process of energy monitoring and management while maintaining a low cost and high level of precision. IoT based solutions are used for efficient and smart utilization of energy. They are used in Smart grid, Smart meter solution implementations.

Energy system reliability is achieved through IoT based analytics system. It helps in preventing system overloading or throttling and also detects threats to system performance and stability, which protects against losses such as downtime, damaged equipment, and injuries.

g. Agriculture
IoT minimizes the human intervention in farming function, farming analysis and monitoring. IoT based systems detect changes to crops, soil environment etc.

IoT in agriculture contribute to,

  • Crop monitoring: Sensors can be used to monitor crops and the health of plants using the data collected. Sensors can also be used for early monitoring of pests and disease.
  • Food safety: The entire supply chain, the Farm, logistics and retails, are all becoming connected. Farm products can be connected with RFID tags, increasing customer confidence.
  • Climate monitoring: Sensors can be used to monitor temperature, humidity, light intensity and soil moisture. These data can be sent to the central system to trigger alerts and automate water, air and crop control.
  • Logistics monitoring: Location based sensors can be used to track vegetables and other Farm products during transport and storage. This enhances scheduling and automates the supply chain.
  • Livestock farming monitoring: The monitoring of Farm animals can be monitored via sensors to detect potential signs of disease. The data can be analysed from the central system and relevant information can be sent to the farmers.

Conclusion
There are many opportunities for the government to use the IoT to make government services more efficient. IoT cannot be analyzed or implemented properly without collaborative efforts between Industry, Government and Agencies. Government and Agencies need to work together to build a consistent set of standards that everyone can follow.

Connected Government solutions using IoT is used in the domain front:

  • Public Safety departments to leverage IoT for the protection of citizens. One method is through using video images and sensors to provide predictive analysis, so that government can provide security to citizen gathering during parades or inaugural events.
  • Healthcare front, advanced analytics of IoT delivers better and granular care of patients. Real time access of patient’s reports, monitoring of patients health status improves the emergency healthcare.
  • IoT helps in content delivery, monitoring of the students, faculty and improving the quality of education and professional development in Education domain.
  • In energy sector, IoT allows variety of energy controls and monitoring functions. It simplifies the process of energy monitoring and management while maintaining low cost and high level of precision. It helps in preventing system overloading, improving performance of the system and stability.
  • IoT strategy is being utilized in the agricultural industry in terms of productivity, pest control, water conservation and continuous production based on improved technology and methods.

In the technology front:

  • IOT connects billions of devices and sensors to create new and innovative applications. In order to support these applications, a reliable, elastic and agile platform is essential. Cloud computing is one of the enabling platforms to support IOT.
  • Connected Government solution can manage the large number of devices and volume of data emitted with IoT. This large volume of new information generated by IoT allows a new collaboration between government, industry and citizens. It helps in rapidly developing IoT focused preventive and predictive analytics.
  • Optimizing the business processes with process automation and prebuilt integrations across multiple departmental applications. This opens up the new opportunities for government to share information, innovate, save lives, make more informed decisions, and actually extend the scope of machine and human interaction.

References

  1. Gartner Says It’s the Beginning of a New Era: The Digital Industrial Economy.” Gartner.
  2. Embracing the Internet of Everything to Capture your share of $14.4 trillion.” Cisco.
  3. With a Trillion Sensors, the Internet of Things Would Be the “Biggest Business in the History of Electronics.” Motherboard.
  4. The ‘Internet of Things’ Will Be The World’s Most Massive Device Market And Save Companies Billions of Dollars.” Business Insider.
  5. Facts and Forecasts: Billions of Things, Trillions of Dollars. Siemens.

Source: http://iotbootcamp.sys-con.com/node/4074527

Advertisements

Juggling Data Connectivity Protocols for Industrial IoT

1 Apr
Real-time needs are key in multiprotocol industrial IoT
%d bloggers like this: